High performance 0.1 μm CMOS devices with 1.5 V power supply

Author(s):  
Y. Taur ◽  
S. Wind ◽  
Y.J. Mii ◽  
Y. Lii ◽  
D. Moy ◽  
...  
2020 ◽  
Vol 1 ◽  
Author(s):  
Waylon J. Hastings ◽  
Dan T.A. Eisenberg ◽  
Idan Shalev

Abstract Technical challenges associated with telomere length (TL) measurements have prompted concerns regarding their utility as a biomarker of aging. Several factors influence TL assessment via qPCR, the most common measurement method in epidemiological studies, including storage conditions and DNA extraction method. Here, we tested the impact of power supply during the qPCR assay. Momentary fluctuations in power can affect the functioning of high-performance electronics, including real-time thermocyclers. We investigated if mitigating these fluctuations by using an uninterruptible power supply (UPS) influenced TL assessment via qPCR. Samples run with a UPS had significantly lower standard deviation (p < 0.001) and coefficient of variation (p < 0.001) across technical replicates than those run without a UPS. UPS usage also improved exponential amplification efficiency at the replicate, sample, and plate levels. Together these improvements translated to increased performance across metrics of external validity including correlation with age, within-person correlation across tissues, and correlation between parents and offspring.


Author(s):  
Sheng Kang ◽  
Guofeng Chen ◽  
Chun Wang ◽  
Ruiquan Ding ◽  
Jiajun Zhang ◽  
...  

With the advent of big data and cloud computing solutions, enterprise demand for servers is increasing. There is especially high growth for Intel based x86 server platforms. Today’s datacenters are in constant pursuit of high performance/high availability computing solutions coupled with low power consumption and low heat generation and the ability to manage all of this through advanced telemetry data gathering. This paper showcases one such solution of an updated rack and server architecture that promises such improvements. The ability to manage server and data center power consumption and cooling more completely is critical in effectively managing datacenter costs and reducing the PUE in the data center. Traditional Intel based 1U and 2U form factor servers have existed in the data center for decades. These general purpose x86 server designs by the major OEM’s are, for all practical purposes, very similar in their power consumption and thermal output. Power supplies and thermal designs for server in the past have not been optimized for high efficiency. In addition, IT managers need to know more information about servers in order to optimize data center cooling and power use, an improved server/rack design needs to be built to take advantage of more efficient power supplies or PDU’s and more efficient means of cooling server compute resources than from traditional internal server fans. This is the constant pursuit of corporations looking at new ways to improving efficiency and gaining a competitive advantage. A new way to optimize power consumption and improve cooling is a complete redesign of the traditional server rack. Extracting internal server power supplies and server fans and centralizing these within the rack aims to achieve this goal. This type of design achieves an entirely new low power target by utilizing centralized, high efficiency PDU’s that power all servers within the rack. Cooling is improved by also utilizing large efficient rack based fans for airflow to all servers. Also, opening up the server design is to allow greater airflow across server components for improved cooling. This centralized power supply breaks through the traditional server power limits. Rack based PDU’s can adjust the power efficiency to a more optimum point. Combine this with the use of online + offline modes within one single power supply. Cold backup makes data center power to achieve optimal power efficiency. In addition, unifying the mechanical structure and thermal definitions within the rack solution for server cooling and PSU information allows IT to collect all server power and thermal information centrally for improved ease in analyzing and processing.


2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Muhamad Arif Indiarto ◽  
Syamsudduha Syahrorini

Performance in a job is very important because it will have an impact on the assessment and productivity of an employee, one of the indicators for evaluating high performance is related to concentration, execution speed and high productivity of the employee. Concentration is needed in working to prevent fatal accidents. In this study, it is possible to monitor measurement results via a smartphone, namely by using the Bluetooth HC-05 sensor as an integration to a smartphone. With 8 pushbutton, Arduino UNO microncontroller, Bluetooth HC-05, 16x2 LCD, and Buzzer. This tool works alternately when the push button Start is pressed, the power from the power supply will provide an electric current to the microncontroller, and continue to be connected to the Bluetooth HC-05, then by providing pushbuttons pressing input. Each pressing instruction on the pushbutton provides a different sound output, consisting of sound output, High, Mid, and Low. And continue on the LCD, and can display the results of the input that has been processed by the microcontroller. The output results are in the form of the amount of time displayed on the LCD, the sound from the buzzer, and from a series of work tools and the output results can be monitored via android smartphone. The results of this study are the accuracy of the tool in each variable low 99%, mid 90%, high 92%. The average tool ranges from 2.44. The error is low 7,4%, mid 7,4%, high 7,6%.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Jianfei Zhao ◽  
Minqi Hua ◽  
Tingzhang Liu ◽  
Tao Yu

Aiming at the function and technical requirements of high-power photovoltaic cell simulation, high-performance programmable logic power supply and dc motor simulation, a high frequency isolation hybrid topology and control strategy based on current-source/voltage-source converter was studied and proposed. Firstly, according to the performance requirements of photovoltaic cell analog power supply, the control strategy requirements of the high-precision wide-range hybrid topology were proposed. Secondly, the working principle of the new hybrid topology was analyzed. At the same time, the equivalent model of the new hybrid topology was simplified and established, and the overall control strategy of the hybrid topology based on current compensation and sliding mode variable structure was proposed. Finally, simulation and experimental research on the hybrid topology was carried out, and the experimental test of photovoltaic cell simulation was completed. The simulation and experimental results show that the hybrid topology and control strategy proposed in this paper has the characteristics of wide-range output regulation, fast dynamic response, high efficiency and high power factor, and can be used for high performance photovoltaic cell simulation, programmable logic power supply and DC motor simulation.


2019 ◽  
Vol 55 (6) ◽  
pp. 7575-7585 ◽  
Author(s):  
Qiongbin Lin ◽  
Fenghuang Cai ◽  
Wu Wang ◽  
Sixiong Chen ◽  
Zhe Zhang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6309
Author(s):  
Miroslav Popela ◽  
Jan Leuchter ◽  
Jana Olivová ◽  
Marie Richterová

This paper describes the design and construction of a remotely controlled mobile interference device designed primarily for interference (jamming) and immunity testing of wireless sensors operating in the 2.4 GHz band (Wi-Fi). The main idea was to build a remotely controlled test device to test the immunity of wireless sensors operating in the 2.4 GHz band directly in field conditions. The remotely controlled mobile interference device is equipped with a special interference apparatus, using a special magnetron tube as a source of interference. Magnetron was selected due to its high performance, allowing interference with wireless sensors over long distances. As magnetron is powered by high voltage (3 kVDC) and is being used in a remotely controlled device, it was important to solve the issue of its power supply using an accumulator. The remotely controlled device was further equipped with the option of detecting and analysing signals in the frequency band of 1 GHz to 18 GHz, adding an extra operational mode that can be used in civil (commercial), industrial, and military applications. Detection and analysis of extraneous signals that may affect our various electronic devices, operating in the 1 GHz to 18 GHz frequency band, is very important. By detecting and analyzing the detected signal, it is possible to recognize what kind of foreign device is transmitting on the detected frequency and how much it can affect the proper functioning of our electronic devices. All the individual parts of the remotely controlled mobile interference device are described in this article in detail, including their optimization for maximum use of the accumulator capacity by which the remotely controlled mobile interference device is powered. A substantial part of this article is devoted to optimizing the interference apparatus power supply with a resonant converter and internal intelligence, where the accumulators’ capacity is measured to gain needed predictions for maximum use of Li-Po batteries and thus extending its time of use.


2013 ◽  
Vol 6 (4) ◽  
pp. 752-762 ◽  
Author(s):  
Rong‐Jong Wai ◽  
Chih‐Ying Lin ◽  
Wen‐Chuan Wu ◽  
Hsin‐Ning Huang

Sign in / Sign up

Export Citation Format

Share Document