Serving Very Large Numbers of Low Latency AutoML Models

Keyword(s):  
2021 ◽  
Vol 14 (8) ◽  
pp. 1311-1324
Author(s):  
Tomoya Suzuki ◽  
Kazuhiro Hiwada ◽  
Hirotsugu Kajihara ◽  
Shintaro Sano ◽  
Shuou Nomura ◽  
...  

For applications in which small-sized random accesses frequently occur for datasets that exceed DRAM capacity, placing the datasets on SSD can result in poor application performance. For the read-intensive case we focus on in this paper, low latency flash memory with microsecond read latency is a promising solution. However, when they are used in large numbers to achieve high IOPS (Input/Output operations Per Second), the CPU processing involved in IO requests is an overhead. To tackle the problem, we propose a new access method combining two approaches: 1) optimizing issuance and completion of the IO requests to reduce the CPU overhead. 2) utilizing many contexts with lightweight context switches by stackless coroutines. These reduce the CPU overhead per request to less than 10 ns, enabling read access with DRAM-like overhead, while the access latency longer than DRAM can be hidden by the context switches. We apply the proposed method to graph algorithms such as BFS (Breadth First Search), which involves many small-sized random read accesses. In our evaluation, the large graph data is placed on microsecond-latency flash memories within prototype boards, and it is accessed by the proposed method. As a result, for the synthetic and real-world graphs, the execution times of the graph algorithms are 88--141% of those when all the data are placed in DRAM.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 268
Author(s):  
Priti M. Shahane ◽  
Narayan Pisharoty

Network on chip (NoC) effectively replaces a traditional bus based architecture in System on chip (SoC). The NoC provides a solution to the communication bottleneck of the bus based interconnection in SoC, where large numbers of Intellectual modules are integrated on a single chip for better performance. In NoC architecture, the router is a dominant component, which should provide contention free architecture with low latency. The router consists of input block, scheduler and crossbar switch. The design of scheduler leads the performance of the NoC router in terms of latency. Hence the starvation free scheduler is paramount importantin the NoC router design. iSLIP (Iterative serial line internet protocol) scheduler has programmable priority encoder which makes it fast and efficient scheduler over round robin arbiter. In this paper 2x4 NoC router using iSLIPscheduler is proposed. The proposed design is implemented using the Verilog programming on Xilinx Spartan 3 device. 


Author(s):  
T. G. Merrill ◽  
B. J. Payne ◽  
A. J. Tousimis

Rats given SK&F 14336-D (9-[3-Dimethylamino propyl]-2-chloroacridane), a tranquilizing drug, developed an increased number of vacuolated lymphocytes as observed by light microscopy. Vacuoles in peripheral blood of rats and humans apparently are rare and are not usually reported in differential counts. Transforming agents such as phytohemagglutinin and pokeweed mitogen induce similar vacuoles in in vitro cultures of lymphocytes. These vacuoles have also been reported in some of the lipid-storage diseases of humans such as amaurotic familial idiocy, familial neurovisceral lipidosis, lipomucopolysaccharidosis and sphingomyelinosis. Electron microscopic studies of Tay-Sachs' disease and of chloroquine treated swine have demonstrated large numbers of “membranous cytoplasmic granules” in the cytoplasm of neurons, in addition to lymphocytes. The present study was undertaken with the purpose of characterizing the membranous inclusions and developing an experimental animal model which may be used for the study of lipid storage diseases.


Author(s):  
Robert Corbett ◽  
Delbert E. Philpott ◽  
Sam Black

Observation of subtle or early signs of change in spaceflight induced alterations on living systems require precise methods of sampling. In-flight analysis would be preferable but constraints of time, equipment, personnel and cost dictate the necessity for prolonged storage before retrieval. Because of this, various tissues have been stored in fixatives and combinations of fixatives and observed at various time intervals. High pressure and the effect of buffer alone have also been tried.Of the various tissues embedded, muscle, cartilage and liver, liver has been the most extensively studied because it contains large numbers of organelles common to all tissues (Fig. 1).


Author(s):  
Roy Skidmore

The long-necked secretory cells in Onchidoris muricata are distributed in the anterior sole of the foot. These cells are interspersed among ciliated columnar and conical cells as well as short-necked secretory gland cells. The long-necked cells contribute a significant amount of mucoid materials to the slime on which the nudibranch travels. The body of these cells is found in the subepidermal tissues. A long process extends across the basal lamina and in between cells of the epidermis to the surface of the foot. The secretory granules travel along the process and their contents are expelled by exocytosis at the foot surface.The contents of the cell body include the nucleus, some endoplasmic reticulum, and an extensive Golgi body with large numbers of secretory vesicles (Fig. 1). The secretory vesicles are membrane bound and contain a fibrillar matrix. At high magnification the similarity of the contents in the Golgi saccules and the secretory vesicles becomes apparent (Fig. 2).


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
H. J. Arnott ◽  
M. A. Webb ◽  
L. E. Lopez

Many papers have been published on the structure of calcium oxalate crystals in plants, however, few deal with the early development of crystals. Large numbers of idioblastic calcium oxalate crystal cells are found in the leaves of Vitis mustangensis, V. labrusca and V. vulpina. A crystal idioblast, or raphide cell, will produce 150-300 needle-like calcium oxalate crystals within a central vacuole. Each raphide crystal is autonomous, having been produced in a separate membrane-defined crystal chamber; the idioblast''s crystal complement is collectively embedded in a water soluble glycoprotein matrix which fills the vacuole. The crystals are twins, each having a pointed and a bidentate end (Fig 1); when mature they are about 0.5-1.2 μn in diameter and 30-70 μm in length. Crystal bundles, i.e., crystals and their matrix, can be isolated from leaves using 100% ETOH. If the bundles are treated with H2O the matrix surrounding the crystals rapidly disperses.


Author(s):  
Thomas T.F. Huang ◽  
Patricia G. Calarco

The stage specific appearance of a retravirus, termed the Intracisternal A particle (IAP) is a normal feature of early preimplantation development. To date, all feral and laboratory strains of Mus musculus and even Asian species such as Mus cervicolor and Mus pahari express the particles during the 2-8 cell stages. IAP form by budding into the endoplasmic reticulum and appear singly or as groups of donut-shaped particles within the cisternae (fig. 1). IAP are also produced in large numbers in several neoplastic cells such as certain plasmacytomas and rhabdomyosarcomas. The role of IAP, either in normal development or in neoplastic behavior, is unknown.


Sign in / Sign up

Export Citation Format

Share Document