Polarimetric Radar-based Quantitative Precipitation Estimation during Typhoon Events over Southern China

Author(s):  
Qiulei Xia ◽  
Haonan Chen ◽  
Wenjuan Zhang ◽  
Jieying He ◽  
Zhendong Yao
Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 30 ◽  
Author(s):  
Yonghua Zhang ◽  
Liping Liu ◽  
Shuoben Bi ◽  
Zhifang Wu ◽  
Ping Shen ◽  
...  

Typhoon rainstorms often cause disasters in southern China. Quantitative precipitation estimation (QPE) with the use of polarimetric radar can improve the accuracy of precipitation estimation and enhance typhoon defense ability. On the basis of the observed drop size distribution (DSD) of raindrops, a comparison is conducted among the DSD parameters and the polarimetric radar observation retrieved from DSD in five typhoon and three squall line events that occurred in southern China from 2016 to 2017. A new piecewise fitting method (PFM) is used to develop the QPE estimators for landfall typhoons and squall lines. The performance of QPE is evaluated by two fitting methods for two precipitation types using DSD data collected. Findings indicate that the number concentration of raindrops in typhoon precipitation is large and the average diameter is small, while the raindrops in squall line rain have opposite characteristics. The differential reflectivity (ZDR) and specific differential phase (KDP) in these two precipitation types increase slowly with the reflectivity factor (ZH), whereas the two precipitation types have different ZDR and KDP in the same ZH. Thus, it is critical to fit the rainfall estimator for different precipitation types. Enhanced estimation can be obtained using the estimators for specific precipitation types, whether the estimators are derived from the conventional fitting method (CFM) or PFM, and the estimators fitted using the PFM can produce better results. The estimators for the developed polarimetric radar can be used in operational QPE and quantitative precipitation foresting, and they can improve disaster defense against typhoons and heavy rains.


2018 ◽  
Vol 35 (6) ◽  
pp. 1253-1271 ◽  
Author(s):  
Hao Huang ◽  
Kun Zhao ◽  
Guifu Zhang ◽  
Qing Lin ◽  
Long Wen ◽  
...  

AbstractQuantitative precipitation estimation (QPE) with polarimetric radar measurements suffers from different sources of uncertainty. The variational approach appears to be a promising way to optimize the radar QPE statistically. In this study a variational approach is developed to quantitatively estimate the rainfall rate (R) from the differential phase (ΦDP). A spline filter is utilized in the optimization procedures to eliminate the impact of the random errors in ΦDP, which can be a major source of error in the specific differential phase (KDP)-based QPE. In addition, R estimated from the horizontal reflectivity factor (ZH) is used in the a priori with the error covariance matrix statistically determined. The approach is evaluated by an idealized case and multiple real rainfall cases observed by an operational S-band polarimetric radar in southern China. The comparative results demonstrate that with a proper range filter, the proposed variational radar QPE with the a priori included agrees well with the rain gauge measurements and proves to have better performance than the other three approaches, that is, the proposed variational approach without the a priori included, the variational approach proposed by Hogan, and the conventional power-law estimator-based approach.


2016 ◽  
Vol 55 (7) ◽  
pp. 1477-1495 ◽  
Author(s):  
Wei-Yu Chang ◽  
Jothiram Vivekanandan ◽  
Kyoko Ikeda ◽  
Pay-Liam Lin

AbstractThe accuracy of rain-rate estimation using polarimetric radar measurements has been improved as a result of better characterization of radar measurement quality and rain microphysics. In the literature, a variety of power-law relations between polarimetric radar measurements and rain rate are described because of the dynamic or varying nature of rain microphysics. A variational technique that concurrently takes into account radar observational error and dynamically varying rain microphysics is proposed in this study. Rain-rate estimation using the variational algorithm that uses event-based observational error and background rain climatological values is evaluated using observing system simulation experiments (OSSE), and its performance is demonstrated in the case of an epic Colorado flood event. The rain event occurred between 11 and 12 September 2013. The results from OSSE show that the variational algorithm with event-based observational error consistently estimates more accurate rain rate than does the “R(ZHH, ZDR)” power-law algorithm. On the contrary, the usage of ad hoc or improper observational error degrades the performance of the variational method. Furthermore, the variational algorithm is less sensitive to the observational error of differential reflectivity ZDR than is the R(ZHH, ZDR) algorithm. The variational quantitative precipitation estimation (QPE) retrieved more accurate rainfall estimation than did the power-law dual-polarization QPE in this particular event, despite the fact that both algorithms used the same dual-polarization radar measurements from the Next Generation Weather Radar (NEXRAD).


2018 ◽  
Vol 11 (1) ◽  
pp. 22 ◽  
Author(s):  
Yabin Gou ◽  
Yingzhao Ma ◽  
Haonan Chen ◽  
Jiapeng Yin

Polarimetric radar measurements and products perform as the cornerstones of modern severe weather warning and nowcast systems. Two radar quantitative precipitation estimation (QPE) frameworks, one based on a radar-gauge feedback mechanism and the other based on standard rain drop size distribution (DSD)-derived rainfall retrieval relationships, are both evaluated and investigated through an extreme severe convective rainfall event that occurred on 23 June 2015 in the mountainous region over eastern China, using the first routinely operational C-band polarimetric radar in China. Complex rainstorm characteristics, as indicated by polarimetric radar observables, are also presented to account for the severe rainfall field center located in the gap between gauge stations. Our results show that (i) the improvements of the gauge-feedback-derived radar QPE estimator can be attributed to the attenuation correction technique and dynamically adjusted Z–R relationships, but it greatly relies on the gauge measurement accuracy. (ii) A DSD-derived radar QPE estimator based on the specific differential phase (KDP) performs best among all rainfall estimators, and the interaction between the mesocyclone and the windward slope of the mountainous terrain can account for its apparent overestimation. (iii) The rainstorm is mainly dominated by small-sized and moderate-sized raindrops, with the mean volume diameter being less than 2 mm, but its KDP column (KDP > 3°·km−1) has a liquid water content that is higher than 2.4815 g·m−3, and a high raindrop concentration (Nw) with log10(Nw) exceeding 5.1 mm−1m−3. In addition, small hailstones falling and melting are also found in this event, which further aggregates Nw upon the severe rainfall center in the gap between gauge stations.


2017 ◽  
Vol 18 (12) ◽  
pp. 3199-3215 ◽  
Author(s):  
Leonardo Porcacchia ◽  
P. E. Kirstetter ◽  
J. J. Gourley ◽  
V. Maggioni ◽  
B. L. Cheong ◽  
...  

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to natural hazards. It is generally difficult to obtain reliable precipitation information over complex areas because of the scarce coverage of ground observations, the limited coverage from operational radar networks, and the high elevation of the study sites. Warm-rain processes have been observed in several flash flood events in complex terrain regions. While they lead to high rainfall rates from precipitation growth due to collision–coalescence of droplets in the cloud liquid layer, their characteristics are often difficult to identify. X-band mobile dual-polarization radars located in complex terrain areas provide fundamental information at high-resolution and at low atmospheric levels. This study analyzes a dataset collected in North Carolina during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEx) field campaign over a mountainous basin where the NOAA/National Severe Storm Laboratory’s X-band polarimetric radar (NOXP) was deployed. Polarimetric variables are used to isolate collision–coalescence microphysical processes. This work lays the basis for classification algorithms able to identify coalescence-dominant precipitation by merging the information coming from polarimetric radar measurements. The sensitivity of the proposed classification scheme is tested with different rainfall-rate retrieval algorithms and compared to rain gauge observations. Results show the inadequacy of rainfall estimates when coalescence identification is not taken into account. This work highlights the necessity of a correct classification of collision–coalescence processes, which can lead to improvements in quantitative precipitation estimation. Future studies will aim at generalizing this scheme by making use of spaceborne radar data.


2021 ◽  
Vol 13 (16) ◽  
pp. 3157
Author(s):  
Yonghua Zhang ◽  
Shuoben Bi ◽  
Liping Liu ◽  
Haonan Chen ◽  
Yi Zhang ◽  
...  

Heavy rain associated with landfalling typhoons often leads to disasters in South China, which can be reduced by improving the accuracy of radar quantitative precipitation estimation (QPE). At present, raindrop size distribution (DSD)-based nonlinear fitting (QPEDSD) and traditional neural networks are the main radar QPE algorithms. The former is not sufficient to represent the spatiotemporal variability of DSDs through the generalized Z–R or polarimetric radar rainfall relations that are established using statistical methods since such parametric methods do not consider the spatial distribution of radar observables, and the latter is limited by the number of network layers and availability of data for training the model. In this paper, we propose an alternative approach to dual-polarization radar QPE based on deep learning (QPENet). Three datasets of “dual-polarization radar observations—surface rainfall (DPO—SR)” were constructed using radar observations and corresponding measurements from automatic weather stations (AWS) and used for QPENetV1, QPENetV2, and QPENetV3. In particular, 13 × 13, 25 × 25, and 41 × 41 radar range bins surrounding each AWS location were used in constructing the datasets for QPENetV1, QPENetV2, and QPENetV3, respectively. For training the QPENet models, the radar data and AWS measurements from eleven landfalling typhoons in South China during 2017–2019 were used. For demonstration, an independent typhoon event was randomly selected (i.e., Merbok) to implement the three trained models to produce rainfall estimates. The evaluation results and comparison with traditional QPEDSD algorithms show that the QPENet model has a better performance than the traditional parametric relations. Only when the hourly rainfall intensity is less than 5 mm (R < 5 mm·h−1), the QPEDSD model shows a comparable performance to QPENet. Comparing the three versions of the QPENet model, QPENetV2 has the best overall performance. Only when the hourly rainfall intensity is less than 5 mm (R < 5 mm·h−1), QPENetV3 performs the best.


2020 ◽  
Vol 12 (12) ◽  
pp. 2058
Author(s):  
Qiulei Xia ◽  
Wenjuan Zhang ◽  
Haonan Chen ◽  
Wen-Chau Lee ◽  
Lei Han ◽  
...  

Accurate quantitative precipitation estimation (QPE) during typhoon events is critical for flood warning and emergency management. Dual-polarization radar has proven to have better performance for QPE, compared to traditional single-polarization radar. However, polarimetric radar applications have not been extensively investigated in China, especially during extreme events such as typhoons, since the operational dual-polarization system upgrade only happened recently. This paper extends a polarimetric radar rainfall system for local applications during typhoons in southern China and conducts comprehensive studies about QPE and precipitation microphysics. Observations from S-band dual-polarization radar in Guangdong Province during three typhoon events in 2017 are examined to demonstrate the enhanced radar rainfall performance. The microphysical properties of hydrometeors during typhoon events are analyzed through raindrop size distribution (DSD) data and polarimetric radar measurements. The stratiform precipitation in typhoons presents lower mean raindrop diameter and lower raindrop concentration than that of the convection precipitation. The rainfall estimates from the adapted radar rainfall algorithm agree well with rainfall measurements from rain gauges. Using the rain gauge data as references, the maximum normalized mean bias ( N M B ) of the adapted radar rainfall algorithm is 20.27%; the normalized standard error ( N S E ) is less than 40%; and the Pearson’s correlation coefficient ( C C ) is higher than 0.92. For the three typhoon events combined, the N S E and N M B are 36.66% and -15.78%, respectively. Compared with several conventional radar rainfall algorithms, the adapted algorithm based on local rainfall microphysics has the best performance in southern China.


2019 ◽  
Vol 36 (4) ◽  
pp. 585-605 ◽  
Author(s):  
Hao Huang ◽  
Guifu Zhang ◽  
Kun Zhao ◽  
Su Liu ◽  
Long Wen ◽  
...  

AbstractDrop size distribution (DSD) is a fundamental parameter in rain microphysics. Retrieving DSDs from polarimetric radar measurements extends the capabilities of rain microphysics research and quantitative precipitation estimation. In this study, issues in rain DSD retrieval were studied with simulated and measured data. It was found that a three-parameter gamma distribution model was not suitable for directly retrieving DSD from polarimetric radar measurements. A statistical constraint, such as the shape–slope relation used in the constrained-gamma (C-G) distribution model, helped to reduce the uncertainties and errors in the retrieval. The inclusion of specific differential phase (KDP) measurements resulted in more accurate DSD retrieval and rain physical parameter estimation if the measurement errors were properly characterized in the error minimization analysis (EMA), which was verified using two real precipitation events. The study demonstrated the potential of using full polarimetric radar measurements to improve rain DSD retrieval.


Sign in / Sign up

Export Citation Format

Share Document