Advances in industrial practices for optimal performance/reliability/power trade-off in commercial high-performance microprocessors for wireless applications

Author(s):  
V. Huard ◽  
F. Cacho ◽  
L. Claramond ◽  
P. Alves ◽  
W. Dalkowski ◽  
...  
Author(s):  
Mark Endrei ◽  
Chao Jin ◽  
Minh Ngoc Dinh ◽  
David Abramson ◽  
Heidi Poxon ◽  
...  

Rising power costs and constraints are driving a growing focus on the energy efficiency of high performance computing systems. The unique characteristics of a particular system and workload and their effect on performance and energy efficiency are typically difficult for application users to assess and to control. Settings for optimum performance and energy efficiency can also diverge, so we need to identify trade-off options that guide a suitable balance between energy use and performance. We present statistical and machine learning models that only require a small number of runs to make accurate Pareto-optimal trade-off predictions using parameters that users can control. We study model training and validation using several parallel kernels and more complex workloads, including Algebraic Multigrid (AMG), Large-scale Atomic Molecular Massively Parallel Simulator, and Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. We demonstrate that we can train the models using as few as 12 runs, with prediction error of less than 10%. Our AMG results identify trade-off options that provide up to 45% improvement in energy efficiency for around 10% performance loss. We reduce the sample measurement time required for AMG by 90%, from 13 h to 74 min.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michal Sitina ◽  
Heiko Stark ◽  
Stefan Schuster

AbstractIn humans and higher animals, a trade-off between sufficiently high erythrocyte concentrations to bind oxygen and sufficiently low blood viscosity to allow rapid blood flow has been achieved during evolution. Optimal hematocrit theory has been successful in predicting hematocrit (HCT) values of about 0.3–0.5, in very good agreement with the normal values observed for humans and many animal species. However, according to those calculations, the optimal value should be independent of the mechanical load of the body. This is in contradiction to the exertional increase in HCT observed in some animals called natural blood dopers and to the illegal practice of blood boosting in high-performance sports. Here, we present a novel calculation to predict the optimal HCT value under the constraint of constant cardiac power and compare it to the optimal value obtained for constant driving pressure. We show that the optimal HCT under constant power ranges from 0.5 to 0.7, in agreement with observed values in natural blood dopers at exertion. We use this result to explain the tendency to better exertional performance at an increased HCT.


Author(s):  
Sambhu Nath Pradhan ◽  
Santanu Chattopadhyay

2011 ◽  
Vol 20 (06) ◽  
pp. 1019-1035 ◽  
Author(s):  
SAMBHU NATH PRADHAN ◽  
M. TILAK KUMAR ◽  
SANTANU CHATTOPDHYAY

In this paper, a heuristic based on genetic algorithm to realize multi-output Boolean function as three-level AND-OR-XOR network performing area power trade-off is presented. All the previous works dealt with the minimization of number of product terms only in the two sum-of-product-expressions representing a Boolean function during AND-OR-XOR network synthesis. To the best of knowledge this is the first ever effort to incorporate total power, that is, dynamic and leakage power along with the area (in terms of number of product terms) during three-level AND-OR-XOR networks synthesis. The synthesis process, without changing the delay performance results in lesser number of product terms compared to those reported in the literature. It also enumerates the trade-offs present in the solution space for different weights associated with area, dynamic power, and leakage power of the resulting circuit.


2000 ◽  
Author(s):  
S. R. Habibi

Abstract This paper considers the design of a high performance hydrostatic actuation system referred to as the ElectroHydraulic Actuator (EHA). The expected performance of EHA and its dominant design parameters are identified by using mathematical modeling. The design parameters are classified into Direct and Indirect categories based on the measure of their accessibility to the designer. The Direct parameters are directly quantifiable and, can be linked to the performance of EHA through a set of mathematical functions. A prototype of EHA has been produced and described. The mathematical functions linking performance to design parameters are used to investigate design trade-offs. Design improvements to the prototype are suggested by using constrained quadratic programming.


Author(s):  
Harold O. Fried ◽  
Loren W. Tauer

This article explores how well an individual manages his or her own talent to achieve high performance in an individual sport. Its setting is the Ladies Professional Golf Association (LPGA). The order-m approach is explained. Additionally, the data and the empirical findings are presented. The inputs measure fundamental golfing athletic ability. The output measures success on the LPGA tour. The correlation coefficient between earnings per event and the ability to perform under pressure is 0.48. The careers of golfers occur on the front end of the age distribution. There is a classic trade-off between the inevitable deterioration in the mental ability to handle the pressure and experience gained with time. The ability to perform under pressure peaks at age 37.


2020 ◽  
Vol 86 ◽  
pp. 01034
Author(s):  
Iriani Ismail

The aim of this study is to explain the role of remuneration in improving the performance of library employees. This study uses the qualitative method which the population is all employees numbering 17 people. Based on interactive analysis methods and ethnographic techniques, its took In-depth interview and observations. Using this analysis, the result showed that the remuneration has an important role in improving employees performance. Some internal and external factors influence it so that optimal performance is obtained. Generally, employees expect that the remuneration has been high to be accepted like as expected. Most employees demands such remuneration to meet their daily needs. External factors also has a strong role so the employees demand high, but not balanced with high performance.


Sign in / Sign up

Export Citation Format

Share Document