An improved frequency compensation techinique for low power, low voltage CMOS amplifiers [techinique read technique]

Author(s):  
P. Tadeparthy
Author(s):  
Urvashi Bansal ◽  
Maneesha Gupta ◽  
Niranjan Raj

The importance of a transimpedance amplifier in an optical transceiver is very well known. In this paper, a novel CMOS design of the bulk-driven transimpedance amplifier (BD-TIA) is given where the bridge-shunt peaking-based frequency compensation technique is exploited to improve frequency response. A pre-existing active inductor has been used for the same. The electrical characteristics and functioning of this inductor simulator make it a suitable alternative to both floating and grounded spiral inductors. In order to verify the workability of the proposed circuit, it has been simulated with TSMC CMOS 0.18[Formula: see text][Formula: see text]m process parameters. The proposed circuit is useful in low-voltage low-power VLSI applications as it uses a single supply of 0.75[Formula: see text]V. The power consumption of BD-TIA is very low, being 0.37[Formula: see text]mW, because a standard MOSFET has been replaced by a bulk-driven MOSFET (BDMOS), while the 3-dB bandwidth is observed to be 4.5[Formula: see text]GHz. The mathematical investigation and small signal analysis show that the simulation results are in good agreement.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


2014 ◽  
Vol 23 (08) ◽  
pp. 1450108 ◽  
Author(s):  
VANDANA NIRANJAN ◽  
ASHWANI KUMAR ◽  
SHAIL BALA JAIN

In this work, a new composite transistor cell using dynamic body bias technique is proposed. This cell is based on self cascode topology. The key attractive feature of the proposed cell is that body effect is utilized to realize asymmetric threshold voltage self cascode structure. The proposed cell has nearly four times higher output impedance than its conventional version. Dynamic body bias technique increases the intrinsic gain of the proposed cell by 11.17 dB. Analytical formulation for output impedance and intrinsic gain parameters of the proposed cell has been derived using small signal analysis. The proposed cell can operate at low power supply voltage of 1 V and consumes merely 43.1 nW. PSpice simulation results using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC) are included to prove the unique results. The proposed cell could constitute an efficient analog Very Large Scale Integration (VLSI) cell library in the design of high gain analog integrated circuits and is particularly interesting for biomedical and instrumentation applications requiring low-voltage low-power operation capability where the processing signal frequency is very low.


Sign in / Sign up

Export Citation Format

Share Document