Under-filled BGA solder joint vibration fatigue damage

Author(s):  
T.E. Wong ◽  
F.W. Palmieri ◽  
H.S. Fenger
2000 ◽  
Author(s):  
T. E. Wong ◽  
F. W. Palmieri ◽  
L. A. Kachatorian

Abstract A newly developed methodology is used to support test validation of ball grid array (BGA) solder joint vibration fatigue life prediction model. This model is evolved from an empirical formula of universal slopes, which is derived from high-cycle fatigue test data using a curve fitting technique over 29 different materials of metals. To develop the BGA solder joint vibration fatigue life prediction model, a test vehicles (TV), on which various sizes of BGA daisy-chained packages are soldered, is first designed, fabricated and subjected to random vibration tests with continuously monitoring the solder joint integrity. Based on the measurement results, a destructive physical analysis is then conducted to further verify the failure locations and crack paths of the solder joints. Next, a method to determine the stresses/strains of BGA solder joints resulting from exposure of the TV to random vibration environments is developed. In this method, a 3-D modeling technique is used to simulate the vibration responses of the BGA packages. Linear static and dynamic finite element analyses with MSC/NASTRAN™ computer code, combined with a volume-weighted average technique, are conducted to calculate the effective strains of the solder joints. In the calculation process, several in-house developed Fortran programs, in conjunction with the outputs obtained from MSC/NASTRAN™ static and frequency response analyses, are used to perform the required computations. Finally, a vibration fatigue life model is established with two unknown parameters, which can be determined by correlating the derived solder effective strains to the test data. This test-calibrated model is then recommended to serve as an effective tool to determine the integrity of the BGA solder joints during vibration. Selecting more study cases with various package sizes, solder ball configurations, vibration profiles to further calibrate this model is also recommended. An example of a 313-pin plastic and 304-pin ceramic BGAs is illustrated in the present study.


2021 ◽  
Vol 35 (6) ◽  
pp. 878-890
Author(s):  
Wan-hai Xu ◽  
Yu-han Li ◽  
Kun Jia ◽  
Jiang Lai

2007 ◽  
Vol 345-346 ◽  
pp. 1393-1396
Author(s):  
Ouk Sub Lee ◽  
Man Jae Hur ◽  
Yeon Chang Park ◽  
Dong Hyeok Kim

It is well-known that the vibration significantly affect the life of solder joint. In this paper, the effects of the vibration on the failure probability of the solder joint are studied by using the failure probability models such as the First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM). The accuracies of the results are estimated by a help of the Monte Carlo Simulation (MCS). The reliability of the lead and the lead-free solder joint was also evaluated. The reliability of lead-free solder joint is found to be higher than that of lead solder joint.


Author(s):  
T. E. Wong ◽  
H. S. Fenger

The objectives of the present studies are to design and test representative commercial off-the-shelf plastic encapsulated microcircuits, including various types of ball grid array (BGA) components, chip scale package, flip chip, lead flat pack, and leadless capacitor, over military random vibration levels. The approach is to demonstrate the solder joint reliability performance of these components through the design of an electrical daisy-chain pattern printed wiring board (PWB) assembly test vehicle (TV), in which the design and manufacturing variables are included. The three variables, including BGA underfilled materials, solder pad sizes on PWB, and BGA rework, with each having either two or three levels of variation are used to address test criteria and to construct 14 different types of TV configurations. All TV configurations are then subjected to random vibration tests while continuously monitoring solder joint integrity. Based on the measured results, a destructive physical analysis is then conducted to further isolate the failure locations and determine the failure mechanisms of the solder joints. Test results indicate that the 352-pin tape BGA and 600-pin super BGA are more susceptible to failure than plastic BGAs under the same conditions, and that the use of underfilled materials appears to improve the life expectancy of all the components. The stiffer packages of tape BGA and super BGA, which have copper heat spreaders, may account for higher BGA solder joint stress/strain during random vibration tests. Test data also shows that only a limited number of electrical opening are observed. This indicates that the test modules are robust enough to survive the random vibration inputs. One possible reason is that the test modules are very stiff, whose 1st mode of natural frequency is about 550 Hz. Therefore, the curvature changes of the test modules are minimal, which resulted in smaller relative motion between the package and the PWB, and less solder joint stresses. All these test results are recommended to be used for calibrating BGA solder joint vibration fatigue life prediction models, which will be presented in other publications.


Author(s):  
Ana Lu´cia F. Lima Torres ◽  
Enrique Casaprima Gonzalez ◽  
Marcos Donato Auler da S. Ferreira ◽  
Marcos Queija de Siqueira ◽  
Marcio Martins Mourelle ◽  
...  

Petrobras developed projects with European companies and Brazilian universities in order to study different configurations of steel risers using flexibilization elements. For the bow turret-moored FPSOs the lazy-wave configuration was considered the most adequate due to its structural behaviour and costs when compared to other configurations. A detailed study was performed by the Petrobras R&D Center to verify the structural integrity of a lazy-wave SCR (SLWR) attached to a turret-moored FPSO at a water depth of 1290 m. The results for the installed riser showed its feasibility. Petrobras continued the studies of the SLWR to verify its behaviour when connected to a FSO with a spread-mooring anchoring. This paper presents the approach and methodology adopted in Petrobras to verify the structural integrity of a SLWR attached to a FSO with spread-mooring anchoring at a water depth of 1800 m. The riser analysis was performed using the Petrobras’s in-house computer codes ANFLEX and POSFAL developed and implemented as part of projects from CENPES with “COPPE/UFRJ - The Engineering Post-Graduating Coordination of the Federal University of Rio de Janeiro”. For VIV (Vortex Induced Vibration) fatigue damage calculation SHEAR7 was used. Maximum stresses were verified through a deterministic non-linear time domain-analysis. The time-domain random nonlinear analysis was considered to be the most appropriate to be used for fatigue damage calculation due to the possibility of representing the existing non-linearities of the model and random characteristic of the environmental loading. For the fatigue damage analysis, a set of load cases that considers the bimodal / bi-directional characteristics of sea-states, probability of occurrence and energy content, was used.


Author(s):  
Hirokazu Oriyama ◽  
Takashi Kawakami ◽  
Takahiro Kinoshita

Sn-Ag-Cu solder materials have been widely used for the mount process of electronics devices or semiconductor packages on print circuit board (PCB). The solder joints are sometimes opened under thermal cyclic loads as low cycle fatigue phenomenon. The fatigue life of solder joint has been investigated by many researchers with experimental and numerical methods. Generally, the induced thermal stress in solder joints should be relaxed as soon and creep damage is considered to be ignored in order to estimate lives of joints. However, it is probable that long term stress is applied to solder joints by the elastic follow-up phenomenon which are depending on the stiffness ratio between solder joints and the electronics device, because the elastic strain in PCB or the electronics device shifts to creep strain in solder joints gradually during a long time. Then the creep damage of solder joint should be counted for the mechanical design of mounted PCBs. And it is known that the interaction between creep damage and fatigue damage significantly shorten the life. In this study, it was discussed whether the interaction between fatigue damage and creep damage has to be considered or not for the mechanical design of the lead free solder joint with basic creep-fatigue tests at an elevated temperature.


Sign in / Sign up

Export Citation Format

Share Document