Force Convection Performance of the Heat Sink with Embedded Heat Pipes Comparing Two Embedding Technologies for Heat Pipes

Author(s):  
Neda Mansouri ◽  
Ahmed Zaghlol ◽  
Cliff Weasner
Author(s):  
Hsiang-Sheng Huang ◽  
Jung-Chang Wang ◽  
Sih-Li Chen

This article provides an experimental method to study the thermal performance of a heat sink with two pairs (outer and inner pair) of embedded heat pipes. The proposed method can determine the heat transfer rate of the heat pipes under various heating power of the heat source. A comprehensive thermal resistance network of the heat sink is also developed. The network estimates the thermal resistances of the heat sink by applying the thermal performance test result. The results show that the outer and inner pairs of heat pipes carries 21% and 27% of the total heat transfer rate respectively, while 52% of the heating power is dissipated from the base plate to the fins. The dominated thermal resistance of the heat sink is the base to heat pipes resistance which is strongly affected by the thermal performance of the heat pipes. The total thermal resistance of the heat sink shows the lowest value, 0.23°C/W, while the total heat transfer rate of the heat sink is 140W and the heat transfer rate of the outer and inner pairs of heat pipes is 30W and 38 W, respectively.


Author(s):  
Garrett A. Glover ◽  
Yongguo Chen ◽  
Annie Luo ◽  
Herman Chu

The current work is a survey of applied applications of passive 2-phase technologies, such as heat pipe and vapor chamber, in heat sink designs with thin base for electronic cooling. The latest improvements of the technologies and manufacturing processes allow achievable heat sink base thickness of 3 mm as compared to around 5 mm previously. The key technical challenge has been on maintaining structural integrity for adequate hollow space for the working fluid vapor in order to retain high performance while reducing the thickness of the overall vapor chamber or flattened heat pipe. Several designs of thin vapor chamber base heat sink and embedded heat pipe heat sink from different vendors are presented for a moderate power density application of a 60 W, 13.2 mm square heat source. Numerous works have been published by both academia and commercial applications in studying the fundamental science of passive 2-phase flow technologies; their performance has been compared to solid materials, like aluminum and copper. These works have established the merits of using heat pipes and vapor chambers in electronic cooling. The intent of this paper is to provide a methodical approach to help to accelerate the process in evaluating the arrays of different commercial designs of these devices in our product design cycle. In this paper, the trade-offs between the different types of technologies are discussed for parameters such as performance advantages, physical attributes, and some cost considerations. This is a bake-off evaluation of the complete heat sink solutions from the various vendors and not a fundamental research of vapor chambers and heat pipes — for that, it is best left to the vendors and universities.


Author(s):  
Victor Adrian Chiriac

The transient thermal behavior of a complex testing system including multiple fans, a mixing enclosure, Cu inserts and a leaded package dissipating large amounts of power over short time durations is evaluated via numerical simulations. The system performance is optimized with heat sink/fan structure for device efficient operation under constant powering. The study provides meaningful understanding and prediction of a transient powering scenario at high powering levels, evaluating the impact of alternative cooling fan/heat pipe configurations on the thermal performance of the system. One design is chosen due to its effective thermal performance and assembly simplicity, with the package embedded in heat sink base with multiple (5) heat pipes. The peak temperature reached by the modified design with 4 cooling fans is ∼95°C, with the corresponding Rja thermal resistance ∼0.58°C/W. For the transient study (with embedded heat pipes and 4 fans), after one cycle, both peak temperature (at 45 s) and the end temperature (at 49 s) decrease as compared to the previous no heat pipe/single fan case (especially the end temperature reduces by ∼16%). The temperature drop between peak and end for each cycle is ∼80.2°C, while the average power per transient cycle is ∼31.27W. With this power, the design with 5 perpendicular heat pipes, 4 fans and insert reaches a steady state peak temperature of ∼98°C. Applying the superposition principle, the maximum transient temperature after a large number of operating cycles will not exceed ∼138.1°C, satisfying the thermal budget under the current operating conditions. The benefit of the study is related to the possibility to extract the maximum/minimum temperatures for a real test involving a large number of heating-cooling cycles, yet maintaining the initial and peak temperatures within a certain range for the optimal operation of the device. The flow and heat transfer fields are thoroughly investigated: using a combination of numerical and analytical study, the thermal performance of the device undergoing large number of periodic thermal cycles is predicted. Further comparison between measurement and simulation results reveals good agreement.


Author(s):  
Victor Adrian Chiriac ◽  
Tien-Yu Tom Lee

A numerical study was conducted to model the transient thermal behavior of a complex testing system including multiple fans, a mixing enclosure, copper inserts and a leaded package dissipating large amounts of power over short time durations. The system is optimized by choosing appropriate heat sink/fan structure for the efficient operation of the device under constant powering. The intent of the study is to provide a better understanding and prediction of a transient powering scenario at high powering levels, while evaluating the impact of alternative cooling fan/heat pipe designs on the thermal performance of the testing system. One design is chosen due to its effective thermal performance and assembly simplicity, with the package embedded in heat sink base with multiple (5) heat pipes. The peak temperature reached by the modified design with 4 cooling fans is ~95°C, with the corresponding Rja thermal resistance ~0.58°C/W. For the transient study (with embedded heat pipes and 4 fans), after one cycle, both peak temperature (at 45 s) and the end temperature (at 49 s) decrease as compared to the previous no heat pipe/single fan case (the end temperature reduces by ~16%). The temperature drop between peak and end for each cycle is ~80.2°C, while the average power per transient cycle is ~31.27W. With this power, the design with 5 perpendicular heat pipes, 4 fans and insert reaches a steady state peak temperature of ~98°C. Applying the superposition principle to the steady state value and 40.1°C fluctuation, the maximum transient temperature after a large number of cycles will not exceed ~138.1°C, satisfying the thermal budget under the current operating conditions. The benefit of the study is related to the possibility to extract the maximum and minimum temperatures for a real test involving a large number of heating-cooling cycles, yet maintaining the initial and peak temperatures within a certain range for the optimal operation of the device. The flow and heat transfer fields are investigated; using a combination of numerical and analytical methods, the thermal performance of the device undergoing large number of periodic thermal cycles is predicted. The comparison between measurement and simulation shows good agreement.


Author(s):  
Ahmed Elkholy ◽  
Roger Kempers

Abstract The trend in miniaturization of power electronic components requires the development of new robust and passive cooling methods to meet increased heat flux demands. Conventional heat sinks encounter inherent shortcomings due to heat spreading resistance of the heat sink baseplate particularly in natural convection heat sinks used to cool small localized heat sources. Heat pipes embedded within the base of heat sinks can be used to improve spreading performance but are limited by the ability to conduct heat into and out of the heat pipes. In the current study, a small, naturally aspirated two-phase thermosyphon heat sink was developed and characterized experimentally. The proposed architecture integrates all thermosyphon components into one compact device, where the evaporator, riser and the downcomer are incorporated at the heat sink base. The downcomer also serves as the condenser within the base of a vertical finned natural convection heat sink. The side-heated evaporator consists of an array mini-channels configuration which can operate in either pool boiling or flow boiling configuration, which allows the thermosyphon heat sink to operate in either reflux mode or looped mode, respectively. Experiments were carried out using HFE 7000 as the working fluid. The effect of the of input power on the thermal performance is examined for both modes for powers ranging from 10 to 80 W. Results demonstrate that this approach significantly reduces the spreading resistance resulting in a net improvement which can be traded-off for a decrease the overall size or weight of the heat sink.


Author(s):  
Gustavo Gutierrez ◽  
Juan Catan˜o

In this study, a flat heat pipe is proposed to use the enormous heat capacity of the soil as a heat sink to remove heat from the ambient and a the same time provides a heat pathway for the external irradiation so that the thermal insulation of the construction is significantly improved. Heat pipes offer an effective and attractive alternative since they work with a small temperature budget. Heat pipes use the latent heat of vaporization as a heat transfer mechanism and provide a very high effective conductivity. Heat pipes are not thermodynamics cycles then do not suffer from the Carnot limitation. Temperature drop in the vapor core is very small and the vapor provides an almost isothermal condition. The operational temperature of a heat pipe is controlled by the conditions in the condenser (in this case, the soil). So, providing an effective heat transfer pathway in the condenser, the vapor temperature will be closed to the temperature of the soil. Soil temperature does not fluctuate bellow certain distance from the surface and in a tropical climate is always cooler that the ambient and can function as a heat sink. As part of this research, a full transient analysis of the operation of a flat heat pipe is carried out. With the insight of numerical results, a flat heat pipe thermal panel can be constructed and tested to verify the feasibility and actual performance of the flat heat pipe panel.


2011 ◽  
Vol 31 (14-15) ◽  
pp. 2221-2229 ◽  
Author(s):  
Zirong Lin ◽  
Shuangfeng Wang ◽  
Jiepeng Huo ◽  
Yanxin Hu ◽  
Jinjian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document