A Robust Low Power Carbon Nanotube Sensor Interface Circuit in 180 nm CMOS Technology

2013 ◽  
Vol 13 (12) ◽  
pp. 4786-4795 ◽  
Author(s):  
Saiyu Ren ◽  
George Yu-Heng Lee
Author(s):  
Meng Xiangyun ◽  
Yang Sen ◽  
Chen Zhongjian ◽  
Lu Wengao ◽  
Zhang Yacong ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 1847-1851
Author(s):  
Xiang Wu ◽  
Fang Ming Deng

This paper presents a capacitive humidity sensor in CMOS technology. The humidity sensor element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication cost. The sensor interface employs a fully-digital architecture based on phase locked loop, which results in low pow dissipation. The proposed humidity sensor is fabricated in TSMC 0.18μm CMOS process and the chip occupies an area of 0.05mm2. The measurement result shows that the sensor value exhibits good linearity within the range of 10-90%RH and the interface circuit consumes only 1.05μW at 0.5V supply voltage.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1823
Author(s):  
Mohammad Haidar ◽  
Hussein Chible ◽  
Corrado Boragno ◽  
Daniele D. Caviglia

Sensor nodes have been assigned a lot of tasks in a connected environment that is growing rapidly. The power supply remains a challenge that is not answered convincingly. Energy harvesting is an emerging solution that is being studied to integrate in low power applications such as internet of things (IoT) and wireless sensor networks (WSN). In this work an interface circuit for a novel fluttering wind energy harvester is presented. The system consists of a switching converter controlled by a low power microcontroller. Optimization techniques on the hardware and software level have been implemented, and a prototype is developed for testing. Experiments have been done with generated input signals resulting in up to 67% efficiency for a constant voltage input. Other experiments were conducted in a wind tunnel that showed a transient output that is compatible with the target applications.


Sign in / Sign up

Export Citation Format

Share Document