Nitrogen-Polar Polarization-Doped Field-Effect Transistor Based on Al0.8Ga0.2N/AlN on SiC With Drain Current Over 100 mA/mm

2019 ◽  
Vol 40 (8) ◽  
pp. 1245-1248 ◽  
Author(s):  
Jori Lemettinen ◽  
Nadim Chowdhury ◽  
Hironori Okumura ◽  
Iurii Kim ◽  
Sami Suihkonen ◽  
...  
Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 573 ◽  
Author(s):  
Hujun Jia ◽  
Mei Hu ◽  
Shunwei Zhu

An improved ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (IUU-MESFET) is proposed in this paper. The structure is obtained by modifying the ultrahigh upper gate height h of the ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (UU-MESFET) structure, and the h is 0.1 μm and 0.2 μm for the IUU-MESFET and UU-MESFET, respectively. Compared with the UU-MESFET, the IUU-MESFET structure has a greater threshold voltage and trans-conductance, and smaller breakdown voltage and saturation drain current, and when the ultrahigh upper gate height h is 0.1 μm, the relationship between these parameters is balanced, so as to solve the contradictory relationship that these parameters cannot be improved simultaneously. Therefore, the power added efficiency (PAE) of the IUU-MESFET structure is increased from 60.16% to 70.99% compared with the UU-MESFET, and advanced by 18%.


2012 ◽  
Vol 229-231 ◽  
pp. 824-827 ◽  
Author(s):  
Gang Chen ◽  
Xiao Feng Song ◽  
Song Bai ◽  
Li Li ◽  
Yun Li ◽  
...  

A silicon carbide (SiC) vertical channel junction field effect transistor (VJFET) was fabricated based on in-house SiC epitaxial wafer with lift-off trenched and implanted method. Its blocking voltage exceeds 1300V at gate bias VG = -6V and forward drain current is in excess of 5A at gate bias VG = 3V and drain bias VD = 3V. The SiC VJFET device’s current density is 240A/cm2 at VG= 3V and VD = 3V, with related specific on-resistance 8.9mΩ•cm2. Further analysis reveals that the on-resistance depends greatly on ohmic contact resistance and the bonding spun gold. The specific on-resistance can be further reduced by improving the doping concentration of SiC channel epilayer and the device’s ohmic contact.


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 81-86
Author(s):  
I. Yu. Lovshenko ◽  
A. Yu. Voronov ◽  
P. S. Roshchenko ◽  
R. E. Ternov ◽  
Ya. D. Galkin ◽  
...  

The results of the simulation the influence of the proton flux on the electrical characteristics of the device structure of dual-channel high electron mobility field effect transistor based on GaAs are presented. The dependences of the drain current ID and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown.


2020 ◽  
Vol 64 ◽  
pp. 115-122
Author(s):  
P. Vimala ◽  
N.R. Nithin Kumar

The paper introduces an analytical model for gate all around (GAA) or Surrounding Gate Metal Oxide Semiconductor Field Effect Transistor (SG-MOSFET) inclusive of quantum mechanical effects. The classical oxide capacitance is replaced by the capacitance incorporating quantum effects by including the centroid parameter. The quantum variant of inversion charge distribution function, inversion layer capacitance, drain current, and transconductance expressions are modeled by employing this model. The established analytical model results agree with the simulated results, verifying these models' validity and providing theoretical supports for designing and applying these novel devices.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xin Li ◽  
Junjie Shi ◽  
Junchao Pang ◽  
Weihua Liu ◽  
Hongzhong Liu ◽  
...  

Graphene channel liquid container field effect transistor pH sensor with interdigital microtrench for liquid ion testing is presented. Growth morphology and pH sensing property of continuous few-layer graphene (FLG) and quasi-continuous monolayer graphene (MG) channels are compared. The experiment results show that the source-to-drain current of the graphene channel FET has a significant and fast response after adsorption of the measured molecule and ion at the room temperature; at the same time, the FLG response time is less than 4 s. The resolution of MG (0.01) on pH value is one order of magnitude higher than that of FLG (0.1). The reason is that with fewer defects, the MG is more likely to adsorb measured molecule and ion, and the molecules and ions can make the transport property change. The output sensitivities of MG are from 34.5% to 57.4% when the pH value is between 7 and 8, while sensitivity of FLG is 4.75% when thepH=7. The sensor fabrication combines traditional silicon technique and flexible electronic technology and provides an easy way to develop graphene-based electrolyte gas sensor or even biological sensors.


Sign in / Sign up

Export Citation Format

Share Document