High performance MMICs in coplanar waveguide technology for commercial V-band and W-band applications

Author(s):  
M. Schlechtweg ◽  
W. Reinert ◽  
A. Bangert ◽  
J. Braunstein ◽  
P.J. Tasker ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 169
Author(s):  
Mengcheng Wang ◽  
Shenglin Ma ◽  
Yufeng Jin ◽  
Wei Wang ◽  
Jing Chen ◽  
...  

Through Silicon Via (TSV) technology is capable meeting effective, compact, high density, high integration, and high-performance requirements. In high-frequency applications, with the rapid development of 5G and millimeter-wave radar, the TSV interposer will become a competitive choice for radio frequency system-in-package (RF SIP) substrates. This paper presents a redundant TSV interconnect design for high resistivity Si interposers for millimeter-wave applications. To verify its feasibility, a set of test structures capable of working at millimeter waves are designed, which are composed of three pieces of CPW (coplanar waveguide) lines connected by single TSV, dual redundant TSV, and quad redundant TSV interconnects. First, HFSS software is used for modeling and simulation, then, a modified equivalent circuit model is established to analysis the effect of the redundant TSVs on the high-frequency transmission performance to solidify the HFSS based simulation. At the same time, a failure simulation was carried out and results prove that redundant TSV can still work normally at 44 GHz frequency when failure occurs. Using the developed TSV process, the sample is then fabricated and tested. Using L-2L de-embedding method to extract S-parameters of the TSV interconnection. The insertion loss of dual and quad redundant TSVs are 0.19 dB and 0.46 dB at 40 GHz, respectively.


1992 ◽  
Vol 2 (6) ◽  
pp. 253-254 ◽  
Author(s):  
E. Carman ◽  
M. Case ◽  
M. Kamegawa ◽  
R. Yu ◽  
K. Giboney ◽  
...  

1988 ◽  
Vol 36 (12) ◽  
pp. 1598-1603 ◽  
Author(s):  
K.H.G. Duh ◽  
Pane-Chane Chao ◽  
P.M. Smith ◽  
L.F. Lester ◽  
B.R. Lee ◽  
...  

2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000050-000053
Author(s):  
Alexander Schulz ◽  
Sven Rentsch ◽  
Lei Xia ◽  
Robert Mueller ◽  
Jens Mueller

This paper presents a low loss fully embedded bandpass filter (BPF) using low temperature co-fired ceramic (LTCC) for multilayer System-in-Package (SiP) and Multi-Chip-Module (MCM) applications, e.g. wireless applications for the unlicensed 60 GHz band. The measured insertion loss was 1.5 dB at the center frequency 58 GHz, and a return loss of less than −10 dB was achieved, including two grounded coplanar waveguide transmission line (CPWg) to stripline transitions. The four layers BPF has a 3 dB bandwidth of about 11 GHz which supplies e.g. broadband and high data rate applications. The whole BPF requires a substrate area of 5.6 × 2.1 × 0.42 mm3 with transitions and a shielding via fence. This BPF suits well for V-band applications in a LTCC package because of the compact dimensions and the good performance.


2019 ◽  
Vol 12 (5) ◽  
pp. 367-371
Author(s):  
Yibang Wang ◽  
Xingchang Fu ◽  
Aihua Wu ◽  
Chen Liu ◽  
Peng Luan ◽  
...  

AbstractWe present details of on-wafer-level 16-term error model calibration kits used for the characterization of W-band circuits based on a grounded coplanar waveguide (GCPW). These circuits were fabricated on a thin gallium arsenide (GaAs) substrate, and via holes, were utilized to ensure single mode propagation (i.e., eliminating the parallel-plate mode or surface mode). To ensure the accuracy of the definition for the calibration kits, multi-line thru-reflect-line (MTRL) assistant standards were also fabricated on the same wafer and measured. The same wafer also contained passive and active devices, which were measured subject to both 16-term and conventional line-reflect-reflect-match calibrations. Measurement results show that 16-term calibration kits are capable of determining the cross-talk more accurately. Other typical calibration techniques were also implemented using the standards on the GCPW calibration kits, and were compared with the MTRL calibration using a passive device under test. This revealed that the proposed GCPW GaAs calibration substrate could be a feasible alternative to conventional CPW impedance standard substrates, for on-wafer measurements at W-band and above.


2018 ◽  
Vol 10 (9) ◽  
pp. 1088-1095
Author(s):  
Smriti Agarwal ◽  
Dharmendra Singh

AbstractIn recent years, millimeter wave (MMW) has received tremendous interest among researchers, which offers systems with high data rate communication, portability, and finer resolution. The design of the antenna at MMWs is challenging as it suffers from fabrication and measurement complexities due to associated smaller dimensions. Current state-of-the-art MMW dual-band antenna techniques demand high precision fabrication, which increases the overall cost of the system. Henceforth, the design of an MMW antenna with fabrication and measurement simplicity is quite challenging. In this paper, a simple coplanar waveguide (CPW) fed single-band MMW antenna operating at 94 GHz (W band) and a dual-band MMW antenna operating concurrently at 60 GHz (V band) and 86 GHz (E band) have been designed, fabricated, and measured. A 50 Ω CPW-to-microstrip transition has also been designed to facilitate probe measurement compatibility and to provide proper feeding to the antenna. The fabricated single frequency 94 GHz antenna shows a fractional bandwidth of 11.2% andE-plane (H-plane) gain 6.17 dBi (6.2 dBi). Furthermore, the designed MMW dual-band antenna shows fractional bandwidth: 2/6.4%, andE-plane (H-plane) gain: 7.29 dBi (7.36 dBi)/8.73 dBi (8.68 dBi) at 60/86 GHz, respectively. The proposed antenna provides a simple and cost-effective solution for different MMW applications.


Sign in / Sign up

Export Citation Format

Share Document