Observer design for the state estimation of a class of communication networks

Author(s):  
Boubekeur Targui ◽  
Miloud Frikel ◽  
Mohammed M'saad ◽  
Said Safi
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
J. Soulami ◽  
A. El Assoudi ◽  
M. Essabre ◽  
M. Habibi ◽  
E. El Yaagoubi

The Takagi-Sugeno (T-S) fuzzy observer for dynamical systems described by ordinary differential equations is widely discussed in the literature. The aim of this paper is to extend this observer design to a class of T-S descriptor systems with unmeasurable premise variables. In practice, the computation of solutions of differential-algebraic equations requires the combination of an ordinary differential equations (ODE) routine together with an optimization algorithm. Therefore, a natural way permitting to estimate the state of such a system is to design a procedure based on a similar numerical algorithm. Beside some numerical difficulties, the drawback of such a method lies in the fact that it is not easy to establish a rigorous proof of the convergence of the observer. The main result of this paper consists in showing that the state estimation problem for a class of T-S descriptor systems can be achieved by using a fuzzy observer having only an ODE structure. The convergence of the state estimation error is studied using the Lyapunov theory and the stability conditions are given in terms of linear matrix inequalities (LMIs). Finally, an application to a model of a heat exchanger pilot process is given to illustrate the performance of the proposed observer.


2018 ◽  
Vol 6 (6) ◽  
pp. 24-34
Author(s):  
Irina N. KOLOSOK ◽  
◽  
Elena S. KORKINA ◽  
Alexandr V. TIKHONOV ◽  
◽  
...  

1993 ◽  
Vol 115 (1) ◽  
pp. 19-26 ◽  
Author(s):  
A. Ray ◽  
L. W. Liou ◽  
J. H. Shen

This paper presents a modification of the conventional minimum variance state estimator to accommodate the effects of randomly varying delays in arrival of sensor data at the controller terminal. In this approach, the currently available sensor data is used at each sampling instant to obtain the state estimate which, in turn, can be used to generate the control signal. Recursive relations for the filter dynamics have been derived, and the conditions for uniform asymptotic stability of the filter have been conjectured. Results of simulation experiments using a flight dynamic model of advanced aircraft are presented for performance evaluation of the state estimation filter.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1967
Author(s):  
Gaurav Kumar Roy ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

Direct Current (DC) grids are considered an attractive option for integrating high shares of renewable energy sources in the electrical distribution grid. Hence, in the future, Alternating Current (AC) and DC systems could be interconnected to form hybrid AC-DC distribution grids. This paper presents a two-step state estimation formulation for the monitoring of hybrid AC-DC grids. In the first step, state estimation is executed independently for the AC and DC areas of the distribution system. The second step refines the estimation results by exchanging boundary quantities at the AC-DC converters. To this purpose, the modulation index and phase angle control of the AC-DC converters are integrated into the second step of the proposed state estimation formulation. This allows providing additional inputs to the state estimation algorithm, which eventually leads to improve the accuracy of the state estimation results. Simulations on a sample AC-DC distribution grid are performed to highlight the benefits resulting from the integration of these converter control parameters for the estimation of both the AC and DC grid quantities.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 651
Author(s):  
Wouter Schinkel ◽  
Tom van der Sande ◽  
Henk Nijmeijer

A cooperative state estimation framework for automated vehicle applications is presented and demonstrated via simulations, the estimation framework is used to estimate the state of a lead and following vehicle simultaneously. Recent developments in the field of cooperative driving require novel techniques to ensure accurate and stable vehicle following behavior. Control schemes for the cooperative control of longitudinal and lateral vehicle dynamics generally require vehicle state information about the lead vehicle, which in some cases cannot be accurately measured. Including vehicle-to-vehicle communication in the state estimation process can provide the required input signals for the practical implementation of cooperative control schemes. This study is focused on demonstrating the benefits of using vehicle-to-vehicle communication in the state estimation of a lead and following vehicle via simulations. The state estimator, which uses a cascaded Kalman filtering process, takes the operating frequencies of different sensors into account in the estimation process. Simulation results of three different driving scenarios demonstrate the benefits of using vehicle-to-vehicle communication as well as the attenuation of measurement noise. Furthermore, in contrast to relying on low frequency measurement data for the input signals of cooperative control schemes, the state estimator provides a state estimate at every sample.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2301
Author(s):  
Yun-Sung Cho ◽  
Yun-Hyuk Choi

This paper describes a methodology for implementing the state estimation and enhancing the accuracy in large-scale power systems that partially depend on variable renewable energy resources. To determine the actual states of electricity grids, including those of wind and solar power systems, the proposed state estimation method adopts a fast-decoupled weighted least square approach based on the architecture of application common database. Renewable energy modeling is considered on the basis of the point of data acquisition, the type of renewable energy, and the voltage level of the bus-connected renewable energy. Moreover, the proposed algorithm performs accurate bad data processing using inner and outer functions. The inner function is applied to the largest normalized residue method to process the bad data detection, identification and adjustment. While the outer function is analyzed whether the identified bad measurements exceed the condition of Kirchhoff’s current law. In addition, to decrease the topology and measurement errors associated with transformers, a connectivity model is proposed for transformers that use switching devices, and a transformer error processing technique is proposed using a simple heuristic method. To verify the performance of the proposed methodology, we performed comprehensive tests based on a modified IEEE 18-bus test system and a large-scale power system that utilizes renewable energy.


2020 ◽  
Vol 53 (2) ◽  
pp. 3683-3688
Author(s):  
Erik Hildebrandt ◽  
Julia Kersten ◽  
Andreas Rauh ◽  
Harald Aschemann

Author(s):  
Adamu Yebi ◽  
Beshah Ayalew ◽  
Satadru Dey

This article discusses the challenges of non-intrusive state measurement for the purposes of online monitoring and control of Ultraviolet (UV) curing processes. It then proposes a two-step observer design scheme involving the estimation of distributed temperature from boundary sensing cascaded with nonlinear cure state observers. For the temperature observer, backstepping techniques are applied to derive the observer partial differential equations along with the gain kernels. For subsequent cure state estimation, a nonlinear observer is derived along with analysis of its convergence characteristics. While illustrative simulation results are included for a composite laminate curing application, it is apparent that the approach can also be adopted for other UV processing applications in advanced manufacturing.


Author(s):  
Hao Yang ◽  
Yilian Zhang ◽  
Wei Gu ◽  
Fuwen Yang ◽  
Zhiquan Liu

This paper is concerned with the state estimation problem for an automatic guided vehicle (AGV). A novel set-membership filtering (SMF) scheme is presented to solve the state estimation problem in the trajectory tracking process of the AGV under the unknown-but-bounded (UBB) process and measurement noises. Different from some existing traditional filtering methods, such as Kalman filtering method and [Formula: see text] filtering method, the proposed SMF scheme is developed to provide state estimation sets rather than state estimation points for the system states to effectively deal with UBB noises and reduce the requirement of the sensor precision. Then, in order to obtain the state estimation ellipsoids containing the true states, a set-membership estimation algorithm is designed based on the AGV physical model and S-procedure technique. Finally, comparison examples are presented to illustrate the effectiveness of the proposed SMF scheme for an AGV state estimation problem in the present of the UBB noises.


Sign in / Sign up

Export Citation Format

Share Document