A transmission gate flip-flop based on dual-threshold CMOS techniques

Author(s):  
Linfeng Li ◽  
Jianping Hu
Keyword(s):  
2019 ◽  
Vol 29 (08) ◽  
pp. 2050123 ◽  
Author(s):  
Neethu Anna Sabu ◽  
K. Batri

One of the paramount issues in the field of VLSI design is the rapid increase in power consumption. Therefore, it is necessary to develop power-efficient circuits. Here, three new simple architectures are presented for a Dynamic Double Edge Triggered Flip-flop named as Transistor Count Reduction Flip-flop, S-TCRFF (Series Stacking in TCRFF) and FST in TCRFF (Forced Stacking of Transistor in TCRFF). The first one features a dynamic design comprising of transmission gate in which total transistor count has greatly reduced without affecting the logic, thereby attaining better power and speed performance. For the reduction of static power, two types of stacking called series and forced transistor stacking are applied. The circuits are simulated using Cadence Virtuoso in 45[Formula: see text]nm CMOS technology with a power supply of 1[Formula: see text]V at 500[Formula: see text]MHz when input switching activity is 25%. The simulated results indicated that the new designs (TCRFF, S-TCRFF and FST in TCRFF) excelled in different circuit performance indices like Power-Delay-Product (PDP), Energy-Delay-Product (EDP), average and leakage power with less layout area compared with the performance of nine recently proposed FF designs. The improvement in PDPdq value was up to 89.2% (TCRFF), 89.9% (S-TCRFF) and 90.3% (FST in TCRFF) with conventional transmission gate FF (TGFF).


2013 ◽  
Vol 712-715 ◽  
pp. 1826-1829
Author(s):  
Mao Qun Yao ◽  
Li Bin Zhang ◽  
Han Neng Ye

based on the analyzing the characteristic of BiCMOS circuits and theory of transmission voltage-switches, we proposed a general structure of binary BiCMOS circuit based on NPN-NPN feedback driver circuit. Then we designed binary BiCMOS master-slave JK flip-flop circuit and transmission gate D flip-flop circuit base on the general structure of NPN-NPN feedback driver circuit. With using HSPICE simulation, the results show that the circuits have the correct logical function. The proposed driver circuits can be used in the design of BiCMOS sequential circuits.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kunwar Singh ◽  
Satish Chandra Tiwari ◽  
Maneesha Gupta

The paper introduces novel architectures for implementation of fully static master-slave flip-flops for low power, high performance, and high density. Based on the proposed structure, traditional C2MOS latch (tristate inverter/clocked inverter) based flip-flop is implemented with fewer transistors. The modified C2MOS based flip-flop designs mC2MOSff1 and mC2MOSff2 are realized using only sixteen transistors each while the number of clocked transistors is also reduced in case of mC2MOSff1. Postlayout simulations indicate that mC2MOSff1 flip-flop shows 12.4% improvement in PDAP (power-delay-area product) when compared with transmission gate flip-flop (TGFF) at 16X capacitive load which is considered to be the best design alternative among the conventional master-slave flip-flops. To validate the correct behaviour of the proposed design, an eight bit asynchronous counter is designed to layout level. LVS and parasitic extraction were carried out on Calibre, whereas layouts were implemented using IC station (Mentor Graphics). HSPICE simulations were used to characterize the transient response of the flip-flop designs in a 180 nm/1.8 V CMOS technology. Simulations were also performed at 130 nm, 90 nm, and 65 nm to reveal the scalability of both the designs at modern process nodes.


2005 ◽  
Vol 72 ◽  
pp. 177-188 ◽  
Author(s):  
Félix M. Goñi ◽  
F-Xabier Contreras ◽  
L-Ruth Montes ◽  
Jesús Sot ◽  
Alicia Alonso

In the past decade, the long-neglected ceramides (N-acylsphingosines) have become one of the most attractive lipid molecules in molecular cell biology, because of their involvement in essential structures (stratum corneum) and processes (cell signalling). Most natural ceramides have a long (16-24 C atoms) N-acyl chain, but short N-acyl chain ceramides (two to six C atoms) also exist in Nature, apart from being extensively used in experimentation, because they can be dispersed easily in water. Long-chain ceramides are among the most hydrophobic molecules in Nature, they are totally insoluble in water and they hardly mix with phospholipids in membranes, giving rise to ceramide-enriched domains. In situ enzymic generation, or external addition, of long-chain ceramides in membranes has at least three important effects: (i) the lipid monolayer tendency to adopt a negative curvature, e.g. through a transition to an inverted hexagonal structure, is increased, (ii) bilayer permeability to aqueous solutes is notoriously enhanced, and (iii) transbilayer (flip-flop) lipid motion is promoted. Short-chain ceramides mix much better with phospholipids, promote a positive curvature in lipid monolayers, and their capacities to increase bilayer permeability or transbilayer motion are very low or non-existent.


2014 ◽  
Author(s):  
Jeffrey S. Robinson ◽  
Jason E. Plaks
Keyword(s):  

2020 ◽  
Author(s):  
Daniela Cavaco ◽  
Joana Simões-Pereira ◽  
Valeriano Leite
Keyword(s):  

2013 ◽  
Vol E96.C (4) ◽  
pp. 511-517 ◽  
Author(s):  
Kuiyuan ZHANG ◽  
Jun FURUTA ◽  
Ryosuke YAMAMOTO ◽  
Kazutoshi KOBAYASHI ◽  
Hidetoshi ONODERA

Author(s):  
Chikara HAMANAKA ◽  
Ryosuke YAMAMOTO ◽  
Jun FURUTA ◽  
Kanto KUBOTA ◽  
Kazutoshi KOBAYASHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document