Large-Scale Electric System Research Center at Texas A&M – Description & Associated Research Activities

Author(s):  
Ikponmwosa Idehen ◽  
Komal S Shetye ◽  
Thomas J Overbye ◽  
Don Morrow
Author(s):  
Irina Gaus ◽  
Klaus Wieczorek ◽  
Juan Carlos Mayor ◽  
Thomas Trick ◽  
Jose´-Luis Garcia` Sin˜eriz ◽  
...  

The evolution of the engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many research programmes during the last decade. The emphasis of the research activities was on the elaboration of a detailed understanding of the complex thermo-hydro-mechanical-chemical processes, which are expected to evolve in the early post closure period in the near field. It is important to understand the coupled THM-C processes and their evolution occurring in the EBS during the early post-closure phase so it can be confirmed that the safety functions will be fulfilled. Especially, it needs to be ensured that interactions during the resaturation phase (heat pulse, gas generation, non-uniform water uptake from the host rock) do not affect the performance of the EBS in terms of its safety-relevant parameters (e.g. swelling pressure, hydraulic conductivity, diffusivity). The 7th Framework PEBS project (Long Term Performance of Engineered Barrier Systems) aims at providing in depth process understanding for constraining the conceptual and parametric uncertainties in the context of long-term safety assessment. As part of the PEBS project a series of laboratory and URL experiments are envisaged to describe the EBS behaviour after repository closure when resaturation is taking place. In this paper the very early post-closure period is targeted when the EBS is subjected to high temperatures and unsaturated conditions with a low but increasing moisture content. So far the detailed thermo-hydraulic behaviour of a bentonite EBS in a clay host rock has not been evaluated at a large scale in response to temperatures of up to 140°C at the canister surface, produced by HLW (and spent fuel), as anticipated in some of the designs considered. Furthermore, earlier THM experiments have shown that upscaling of thermal conductivity and its dependency on water content and/or humidity from the laboratory scale to a field scale needs further attention. This early post-closure thermal behaviour will be elucidated by the HE-E experiment, a 1:2 scale heating experiment setup at the Mont Terri rock laboratory, that started in June 2011. It will characterise in detail the thermal conductivity at a large scale in both pure bentonite as well as a bentonite-sand mixture, and in the Opalinus Clay host rock. The HE-E experiment is especially designed as a model validation experiment at the large scale and a modelling programme was launched in parallel to the different experimental steps. Scoping calculations were run to help the experimental design and prediction exercises taking the final design into account are foreseen. Calibration and prediction/validation will follow making use of the obtained THM dataset. This benchmarking of THM process models and codes should enhance confidence in the predictive capability of the recently developed numerical tools. It is the ultimate aim to be able to extrapolate the key parameters that might influence the fulfilment of the safety functions defined for the long term steady state.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Qinghua Li ◽  
Jintao Liu ◽  
Shilang Xu

As one-dimensional (1D) nanofiber, carbon nanotubes (CNTs) have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs) reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.


2017 ◽  
Vol 26 (01) ◽  
pp. 188-192 ◽  
Author(s):  
H. Dauchel ◽  
T. Lecroq

Summary Objective: To summarize excellent current research and propose a selection of best papers published in 2016 in the field of Bioinformatics and Translational Informatics with applications in the health domain and clinical care. Methods: We provide a synopsis of the articles selected for the IMIA Yearbook 2017, from which we attempt to derive a synthetic overview of current and future activities in the field. As in 2016, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section coverage. Each section editor evaluated separately the set of 951 articles returned and evaluation results were merged for retaining 15 candidate best papers for peer-review. Results: The selection and evaluation process of papers published in the Bioinformatics and Translational Informatics field yielded four excellent articles focusing this year on the secondary use and massive integration of multi-omics data for cancer genomics and non-cancer complex diseases. Papers present methods to study the functional impact of genetic variations, either at the level of the transcription or at the levels of pathway and network. Conclusions: Current research activities in Bioinformatics and Translational Informatics with applications in the health domain continue to explore new algorithms and statistical models to manage, integrate, and interpret large-scale genomic datasets. As addressed by some of the selected papers, future trends would include the question of the international collaborative sharing of clinical and omics data, and the implementation of intelligent systems to enhance routine medical genomics.


2021 ◽  
Vol 49 (3) ◽  
pp. 3-11
Author(s):  
A. V. Sokov

This year in 2021, Shirshov Institute of Oceanology celebrated 75 years old. Shirshov Institute is the largest and oldest research center of seas and oceans in Russia. In the past and present of the Institute, there are many significant discoveries and developments for world oceanology, the most complex expeditions and large-scale international projects. I am sure that our future as a Center for the Study of the World Ocean will be no less rich and bright.


2021 ◽  
Author(s):  
Zhen Li ◽  
Thomas Kempka ◽  
Erik Spangenberg ◽  
Judith Schicks

<p>Natural gas hydrates are considered as one of the most promising alternatives to conventional fossil energy sources, and are thus subject to world-wide research activities for decades. Hydrate formation from methane dissolved in brine is a geogenic process, resulting in the accumulation of gas hydrates in sedimentary formations below the seabed or overlain by permafrost. The LArge scale Reservoir Simulator (LARS) has been developed (Schicks et al., 2011, 2013; Spangenberg et al., 2015) to investigate the formation and dissociation of gas hydrates under simulated in-situ conditions of hydrate deposits. Experimental measurements of the temperatures and bulk saturation of methane hydrates by electrical resistivity tomography have been used to determine the key parameters, describing and characterising methane hydrate formation dynamics in LARS. In the present study, a framework of equations of state to simulate equilibrium methane hydrate formation in LARS has been developed and coupled with the TRANsport Simulation Environment (Kempka, 2020) to study the dynamics of methane hydrate formation and quantify changes in the porous medium properties in LARS. We present our model implementation, its validation against TOUGH-HYDRATE (Gamwo & Liu, 2010) and the findings of the model comparison against the hydrate formation experiments undertaken by Priegnitz et al. (2015). The latter demonstrates that our numerical model implementation is capable of reproducing the main processes of hydrate formation in LARS, and thus may be applied for experiment design as well as to investigate the process of hydrate formation at specific geological settings.</p><p>Key words: dissolved methane; hydrate formation; hydration; python; permeability.</p><p>References</p><p>Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., & Luzi, M. (2011). New approaches for the production of hydrocarbons from hydrate bearing sediments. Energies, 4(1), 151-172, https://doi.org/10.3390/en4010151</p><p>Schicks, J. M., Spangenberg, E., Giese, R., Luzi-Helbing, M., Priegnitz, M., & Beeskow-Strauch, B. (2013). A counter-current heat-exchange reactor for the thermal stimulation of hydrate-bearing sediments. Energies, 6(6), 3002-3016, https://doi.org/10.3390/en6063002</p><p>Spangenberg, E., Priegnitz, M., Heeschen, K., & Schicks, J. M. (2015). Are laboratory-formed hydrate-bearing systems analogous to those in nature?. Journal of Chemical & Engineering Data, 60(2), 258-268, https://doi.org/10.1021/je5005609</p><p>Kempka, T. (2020) Verification of a Python-based TRANsport Simulation Environment for density-driven fluid flow and coupled transport of heat and chemical species. Adv. Geosci., 54, 67–77, https://doi.org/10.5194/adgeo-54-67-2020</p><p>Gamwo, I. K., & Liu, Y. (2010). Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial & Engineering Chemistry Research, 49(11), 5231-5245, https://doi.org/10.1021/ie901452v</p><p>Priegnitz, M., Thaler, J., Spangenberg, E., Schicks, J. M., Schrötter, J., & Abendroth, S. (2015). Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data. Geophysical Journal International, 202(3), 1599-1612, https://doi.org/10.1093/gji/ggv245</p>


foresight ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 491-500 ◽  
Author(s):  
Anna Grebenyuk ◽  
Nikolai Ravin

Purpose To define strategic directions for the Russia’s social, economic, scientific and technological development in 2011-2013, a large-scale foresight study including the deep analysis of prospects of biotechnology development there was undertaken (Russia 2030: Science and Technology Foresight). This paper aims to present results of this research. Design/methodology/approach The study was based on a combination of technology-push and market-pull approaches that aimed not only to identify most promising science and technology (S&T) areas but also to understand how they can be realized in practice. Representatives from federal authorities, science and business were involved in the project to create future visions of technological directions; analyze grand challenges, weak signals and wild cards; and set research and development (R&D) priorities. Findings According to results of the study, Russia has a potential for biotech sector development, although the level of R&D in the majority of areas is lagging behind that in the USA and leading EU countries. However, there are several advanced applied research areas where efforts can be focused. Among them are high-performance genomics and post-genomics research platforms, systems and structural biology, microbial metabolic engineering, plant biotechnology and microbial strains and consortia for development of symbiotic plant–microbial communities. Originality/value Concentration of available resources of government and business on biotechnological sector development can help to find answers for challenges that Russia faces today or will face tomorrow. It will help to pick up on the current level of research activities, improve the quality of personnel training, make this area the engine of the economy and carry out the so-called new industrialization of the country, building a new, high-tech device industry.


2020 ◽  
Vol 5 ◽  
pp. 265
Author(s):  
Mike English ◽  
Jacinta Nzinga ◽  
Grace Irimu ◽  
David Gathara ◽  
Jalemba Aluvaala ◽  
...  

In low and middle-income countries (LMIC) general hospitals are important for delivering some key acute care services. Neonatal care is emblematic of these acute services as averting deaths requires skilled care over many days from multiple professionals with at least basic equipment. However, hospital care is often of poor quality and large-scale change is needed to improve outcomes. In this manuscript we aim to show how we have drawn upon our understanding of contexts of care in Kenyan general hospital NBUs, and on social and behavioural theories that offer potential mechanisms of change in these settings, to develop an initial programme theory guiding a large scale change intervention to improve neonatal care and outcomes.  Our programme theory is an expression of our assumptions about what actions will be both useful and feasible.  It incorporates a recognition of our strengths and limitations as a research-practitioner partnership to influence change. The steps we employ represent the initial programme theory development phase commonly undertaken in many Realist Evaluations. However, unlike many Realist Evaluations that develop initial programme theories focused on pre-existing interventions or programmes, our programme theory informs the design of a new intervention that we plan to execute. Within this paper we articulate briefly how we propose to operationalise this new intervention. Finally, we outline the quantitative and qualitative research activities that we will use to address specific questions related to the delivery and effects of this new intervention, discussing some of the challenges of such study designs. We intend that this research on the intervention will inform future efforts to revise the programme theory and yield transferable learning.


2020 ◽  
Vol 27 (2) ◽  
pp. 53-62
Author(s):  
Christiana Panteli ◽  
Eglė Klumbytė ◽  
Rasa Apanavičienė ◽  
Paris A. Fokaides

Financial supporting schemes for the energy upgrading of the building sector in Europe constitute one of the major policies of the European Union (EU). Since the beginning of the 2000s, dozens of funding programs and initiatives have been announced by the European Commission (EC). It is a fact that the majority of these policies have borne fruit, as the metrics on both energy savings in the building sector and the promotion of renewable energy in the built environment have turned the EU into a global pioneer. This paper attempts to give a brief overview of the main policy and financial tools for the energy upgrading of the built environment in Europe. Emphasis is placed on three major mechanisms, which concern different-scale projects: crowdfunding projects, public-private co-financing projects, and large-scale projects funded by financial institutions such as European Investment Bank (EIB). Reference is also made to recently implemented EU funded research programs in this field. This work aspires to constitute a reference study for future research activities in the field of financial supporting schemes for energy upgrading of buildings in Europe.


Sign in / Sign up

Export Citation Format

Share Document