Modeling networks of molecular interactions in the living cell: structure, dynamics, and applications

Author(s):  
K.V. Velden ◽  
J. Peccoud
Author(s):  
Ying Zhang ◽  
Philip R. LeDuc

The actin cytoskeleton provides mechanical support for the cell and influences activities such as cancer metastasis and chemotaxis. While their mechanical responses have been studied in vivo and in vitro, understanding the link between these two forms remains challenging. To explore this gap and further understand cell structure, we reconstructed the cell cytoskeleton in a membrane-like spherical liposome to mimic the cellular environment; this enables an artificial “cell like” system. Through this approach, we are pursuing a path to compare in vitro mechanics from a polymer physics perspective of individual actin filaments with the in vivo mechanics of a living cell [1]. A living cell contains many organelles, which are in a highly packed environment and require significant organization to function. The actin cytoskeleton provides both structural and organizational regulation that is essential for cellular response. Here, we first encapsulated G-actin into giant unilamellar vesicles through an electroformation technique and then polymerized them into actin filaments (F-actin) within individual vesicles. To probe their conformation, we visualized these vesicles with fluorescence and laser scanning confocal microscopy. We then used a tapping mode atomic force microscopy to determine the mechanical properties of these cell-like systems. These results provide insight into a wide range of fields and studies including polymer physics, cell biology, and biotechnology.


RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 34979-34984 ◽  
Author(s):  
Dania Olmos ◽  
Gustavo González-Gaitano ◽  
Javier González-Benito

Study of molecular interactions and dynamics in LDPE–silica nanocomposites using FTIR spectroscopy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246402
Author(s):  
Alexander Hofmann ◽  
Florian Putz ◽  
Maike Büttner-Herold ◽  
Markus Hecht ◽  
Rainer Fietkau ◽  
...  

Homotypic or heterotypic internalization of another, either living or necrotic cell is currently in the center of research interest. The active invasion of a living cell called entosis and cannibalism of cells by rapidly proliferating cancers are prominent examples. Additionally, normal healthy tissue cells are capable of non-professional phagocytosis. This project studied the relationship between non-professional phagocytosis, individual proliferation and cell cycle progression. Three mesenchymal and two epithelial normal tissue cell lines were studied for homotypic non-professional phagocytosis. Homotypic dead cells were co-incubated with adherent growing living cell layers. Living cells were synchronized by mitotic shake-off as well as Aphidicolin-treatment and phagocytotic activity was analyzed by immunostaining. Cell cycle phases were evaluated by flow cytometry. Mesenchymal and epithelial normal tissue cells were capable of internalizing dead cells. Epithelial cells had much higher non-professional phagocytotic rates than mesenchymal cells. Cells throughout the entire cell cycle were able to phagocytose. The phagocytotic rate significantly increased with progressing cell cycle phases. Mitotic cells regularly phagocytosed dead cells, this was verified by Nocodazole and Colcemid treatment. Taken together, our findings indicate the ability of human tissue cells to phagocytose necrotic neighboring cells in confluent cell layers. The origin of the cell line influences the rate of cell-in-cell structure formation. The higher cell-in-cell structure rates during cell cycle progression might be influenced by cytoskeletal reorganization during this period or indicate an evolutionary anchorage of the process. Recycling of nutrients during cell growth might also be an explanation.


2010 ◽  
Vol 25 (2) ◽  
pp. 75-82 ◽  
Author(s):  
Kazuya Morikawa ◽  
Ryosuke L. Ohniwa ◽  
Toshiko Ohta ◽  
Yoshikazu Tanaka ◽  
Kunio Takeyasu ◽  
...  

Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
D. Caillard ◽  
J.L. Martin

The behaviour of the dislocation substructure during the steady stage regime of creep, as well as its contribution to the creep rate, are poorly known. In particular, the stability of the subboundaries has been questioned recently, on the basis of experimental observations |1||2| and theoretical estimates |1||3|. In situ deformation experiments in the high voltage electron microscope are well adapted to the direct observation of this behaviour. We report here recent results on dislocation and subboundary properties during stationary creep of an aluminium polycristal at 200°C.During a macroscopic creep test at 200°C, a cell substructure is developed with an average cell size of a few microns. Microsamples are cut out of these specimens |4| with the same tensile axis, and then further deformed in the microscope at the same temperature and stain rate. At 1 MeV, one or a few cells can be observed in the foil thickness |5|. Low electron fluxes and an image intensifier were used to reduce radiation damage effects.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


Sign in / Sign up

Export Citation Format

Share Document