Absorption performance of the micro concentrating photovoltaic with multimode waveguide and slanted micro-hole cell

Author(s):  
Md. Mosaddek Hossain Adib ◽  
Arshad M. Chowdhury ◽  
Gee-Kung Chang ◽  
Nowshad Amin
2016 ◽  
Vol 31 (6) ◽  
pp. 567 ◽  
Author(s):  
XU Shuang-Shuang ◽  
CHEN Gong ◽  
ZHANG Hai-Qin ◽  
CHEN Yuan ◽  
ZHAO Yan

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3254
Author(s):  
Yuri Hayashi Isayama ◽  
Hugo Enrique Hernández-Figueroa

A generalization of the concept of multimode interference sensors is presented here for the first time, to the best of our knowledge. The existing bimodal and trimodal sensors correspond to particular cases of those interference sensors. A thorough study of the properties of the multimode waveguide section provided a deeper insight into the behavior of this class of sensors, which allowed us to establish new criteria for designing more sensitive structures. Other challenges of using high-order modes within the sensing area of the device reside in the excitation of these modes and the interpretation of the output signal. To overcome these, we developed a novel structure to excite any desired high-order mode along with the fundamental mode within the sensing section, while maintaining a fine control over the power distribution between them. A new strategy to detect and interpret the output signal is also presented in detail. Finally, we designed a high-order sensor for which numerical simulations showed a theoretical limit of detection of 1.9×10−7 RIU, making this device the most sensitive multimode interference sensor reported so far.


2021 ◽  
Author(s):  
Junli Chang ◽  
Liping Jiang ◽  
Guangzhao Wang ◽  
Yuhong Huang ◽  
Hong Chen

The optical absorption performance of the perovskite FAPbI3 in the visible-light range is significantly improved by constructing a CdS/FAPbI3 heterostructure.


Author(s):  
Salman Khani ◽  
Seyedhamidreza Shahabi Haghighi ◽  
Mohammad Reza Razfar ◽  
Masoud Farahnakian

In this paper, the thread turning of aluminum 7075-T6 alloy is studied using micro-hole textured solid-lubricant embedded carbide inserts. The primary focus of this work is to enhance the performance of the thread turning process for producing high quality threaded parts. To achieve this, micro-holes were generated by laser micro-machining on the rake face of tools and then, MoS2 and CNT (carbon nanotube) solid-lubricants were embedded into micro-holes. The effects of micro-holes and solid-lubrication on the performance of the thread turning process were examined using traditional tool ( T0), micro-hole textured tool ( T1), micro-hole textured MoS2 embedded tool ( T2), and micro-hole textured CNT embedded tool ( T3). In this study, cutting forces, chip-tool contact length, built-up edge (BUE), surface roughness, and operating cost were investigated. The influence of micro-hole generation on the mechanical strength of cutting inserts was evaluated using the finite element method. The results showed that the fabrication of the micro-holes on the rake surface of cutting inserts has no significant effect on the mechanical strength of the tools. The comparisons of our method with traditional tools demonstrated that the cutting performance improved in the threading process. Our results reveal that the main cutting force, radial thrust force, surface roughness, built-up edge, and chip-tool contact length reduced 37.1%, 40.9%, 37.9%, 58.3%, and 38.2%, respectively, as T3 tools are applied in this process. A cost analysis, based on estimated tooling costs, showed that the T3 tool can yield an 18% reduction in overall operating cost.


Author(s):  
Chuyang Liu ◽  
Tao Jiang ◽  
Tian Gao ◽  
Guangxian Xia ◽  
Yufan Cao ◽  
...  

It is well known that both hard/soft magnetic exchange-coupling and ferroelectric-ferromagnetic coupling could facilitate the microwave absorption behavior. Herein, we propose the BaZrxFe12-xO19/Fe3O4/BaZrO3 composites to integrate the advantages of the...


Sign in / Sign up

Export Citation Format

Share Document