Characterization of bitline stress effects on flash cell after program/erase cycle

Author(s):  
V.C. Liu ◽  
J.C. Guo ◽  
K.L. Chang ◽  
C.I. Huang ◽  
M.T. Wang ◽  
...  
Keyword(s):  
2014 ◽  
Vol 891-892 ◽  
pp. 1205-1211 ◽  
Author(s):  
Dale L. Ball ◽  
Mark A. James ◽  
Robert J. Bucci ◽  
John D. Watton ◽  
Adrian T. DeWald ◽  
...  

The fully effective utilization of large aluminum forgings in aerospace structures has been hampered in the past by inadequate understanding of, and sometimes inaccurate representation of, bulk residual stresses and their impact on both design mechanical properties and structural performance. In recent years, significant advances in both computational and experimental methods have led to vastly improved characterization of residual stresses. As a result, new design approaches which require the extraction of residual stress effects from material property data and the formal inclusion of residual stresses in the design analysis, have been enabled. In particular, the impact of residual stresses on durability and damage tolerance can now be assessed, and more importantly, accounted for at the beginning of the design cycle.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Samuel C. Woodburn ◽  
Justin L. Bollinger ◽  
Eric S. Wohleb

AbstractMicroglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as ‘microglia activation’ or ‘neuroinflammation’ are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.


Author(s):  
P. Dong ◽  
J. K. Hong

Over the last decade, as more in-depth understanding of weld residual stresses is being achieved, particularly of their characteristic distributions in pressure vessel and piping components, the residual stress effects on stress intensities at welds are becoming better understood. In this paper, some of the important residual stress characteristics are first identified in the form of either “bending” dominated or “self-equilibrating” dominated types for girth welds. The applicability in other joint configurations in welded structures is then discussed, with a collection of validated residual stress distributions. The characterization of both “bending” and “self-equilibrating” types in residual stress distributions provides a consistent framework for stress intensity factor considerations in either fracture and fatigue assessment. The contribution of weld residual stresses to stress intensities at welds are shown to be in the form of K solutions under displacement controlled conditions. The “bending” type residual stresses provide a longer range of influence than “self-equilibrating” type in K solutions. The contribution of “self-equilibrating” type residual stresses to stress intensities is shown to be dominant when crack size is small, while the contribution of the “bending” type dominant for crack size up to a much large size with respect to wall thickness.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (11) ◽  
pp. 1880-1890 ◽  
Author(s):  
R. Booth ◽  
S. Noh ◽  
H. Kim

Vascular endothelial cells (VECs), which line blood vessels and are key to understanding pathologies and treatments of various diseases, experience highly variable wall shear stress (WSS)in vivo(1–60 dyn cm−2), imposing numerous effects on physiological and morphological functions.


Author(s):  
P. Dong

Over the last decade, as more in-depth understanding of weld residual stresses is being achieved, particularly of their characteristic distributions in pressure vessel and piping components, the residual stress effects on stress intensities at welds are becoming better understood. In this paper, some of the important residual stress characteristics are first identified in the form of either “bending” dominated or “self-equilibrating” dominated types for girth welds. The applicability in other joint configurations in welded structures is then discussed, with a collection of validated residual stress distributions. The characterization of both “bending” and “self-equilibrating” types in residual stress distributions provides a consistent framework for stress intensity factor considerations in either fracture and fatigue assessment. The contribution of weld residual stresses to stress intensities at welds are shown to be in the form of K solutions under displacement controlled conditions. The “bending” type residual stresses provide a longer range of influence than “self-equilibrating” type in K solutions. The contribution of “self-equilibrating” type residual stresses to stress intensities is shown to be dominant when crack size is small, while the contribution of the “bending” type dominant for crack size up to a much large size with respect to wall thickness.


Sign in / Sign up

Export Citation Format

Share Document