Studying Designers using a Tabletop System for 3D Design with a Focus on the Impact on Spatial Cognition

Author(s):  
M.L. Maher ◽  
Mi Jeong Kim
2019 ◽  
Vol 164 ◽  
pp. 167-174 ◽  
Author(s):  
Kate I Norman ◽  
Jessie E.C Adriaense ◽  
Christine J Nicol
Keyword(s):  

2017 ◽  
Vol 44 (5-6) ◽  
pp. 294-302 ◽  
Author(s):  
Eric X. Wei ◽  
Esther S. Oh ◽  
Aisha Harun ◽  
Matthew Ehrenburg ◽  
Yuri Agrawal

Background/Aims: Patients with Alzheimer’s disease (AD) experience increased rates of vestibular loss. Recent studies suggest that saccular impairment in mild cognitive impairment (MCI) and AD patients is associated with impaired spatial cognitive function. However, the impact of saccular impairment on everyday behaviors that rely on spatial cognitive function is unknown. Methods: We recruited 60 patients (21 MCI and 39 AD) from an interdisciplinary Memory Clinic. Saccular function was measured, and a visuospatial questionnaire was administered to assess whether participants experienced impairments in terms of driving difficulty, losing objects, falls, and fear of falling. Results: In multiple logistic regression analyses, MCI and AD patients with bilateral saccular impairment had a significant, greater than 12-fold odds of driving difficulty (OR 12.1, 95% CI 1.2, 117.7) compared to MCI and AD patients with normal saccular function, and the association appears to be mediated by spatial cognition as measured by the Money Road Map Test. Conclusion: This study suggests a novel link between saccular impairment and driving difficulty in MCI and AD patients and demonstrates that driving difficulty may be a real-world manifestation of impaired spatial cognition associated with saccular impairment.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1930
Author(s):  
Azwad Tamir ◽  
Milad Salem ◽  
Jie Lin ◽  
Qutaiba Alasad ◽  
Jiann-shiun Yuan

In this study, we developed a complete flow for the design of monolithic 3D ICs. We have taken the register-transfer level netlist of a circuit as the input and synthesized it to construct the gate-level netlist. Next, we partitioned the circuit using custom-made partitioning algorithms and implemented the place and route flow of the entire 3D IC by repurposing 2D electronic design automation tools. We implemented two different partitioning algorithms, namely the min-cut and the analytical quadratic (AQ) algorithms, to assign the cells in different tiers. We applied our flow on three different benchmark circuits and compared the total power dissipation of the 3D designs with their 2D counterparts. We also compared our results with that of similar works and obtained significantly better performance. Our two-tier 3D flow with AQ partitioner obtained 37.69%, 35.06%, and 12.15% power reduction compared to its 2D counterparts on the advanced encryption standard, floating-point unit, and fast Fourier transform benchmark circuits, respectively. Finally, we analyzed the type of circuits that are more applicable for a 3D layout and the impact of increasing the number of tiers of the 3D design on total power dissipation.


Author(s):  
Giulio Zamboni ◽  
Liping Xu

The exit flow field of the fan root of large turbofan engines defines the inlet conditions to the core compressor. This in turn could have significant impact to the performance of the core compressor. This study is aimed to resolve two related issues concerning the impact of the fan root flow on the core compressor performance: to establish the effect of an increased loss at the inlet on the engine specific fuel consumption (SFC) and to assess the effect of the radial distribution of the fan root flow on the engine performance. With understanding of these issues, the geometric parameters and design details which can produce a more uniform core flow at the exit of the fan stage module can be identified. The fan root flow is analysed with methods of different complexity and fidelity. A simple cycle analysis is used to assess the impact on engine SFC of a stagnation pressure deficit at the fan root; a throughflow code is used for the preliminary study of the curvature effect of the root flow path and 3D RANS CFD calculations are then used to simulate the flow path from the inlet of the fan to the first stage of the core compressor. The adequacy of the application of the numerical code in this case has been assessed and confirmed by the comparison with the experimental data for two rig configurations. The results of this study show that the flow at the fan hub region is very complex and dominated by 3D effects. The interaction of the secondary flow with real geometries, such as leakage flows, is found to have a strong detrimental effect on the core performance. The curvature of the hub end-wall is a key parameter controlling the fan root flow topology; it influences the strength of the secondary flow, the spanwise distribution of the flow and its sensitivity to leakage flow. With this understanding it is possible to redesign of the fan hub flow path to reduce the loss generation by a significant amount.


2020 ◽  
Vol 10 (9) ◽  
pp. 3128 ◽  
Author(s):  
Krzysztof Robert Czech

In predicting the impact of vibrations propagated in a ground on newly designed construction objects, it is extremely important to reliably measure the time histories of velocity or acceleration at the site of the planned investment. As some studies show, the method of coupling accelerometers and geophones to the ground can affect not only the level of peak particle accelerations (PPA) or peak particle velocities (PPV)—commonly used in this type of evaluation—but also vibration frequency distribution of recorded signals. This makes it difficult to compare and analyze the results obtained by various research teams. Conclusions based on this type of comparison may be wrong. For this reason, it is extremely important that reliable dynamic measurements related to the propagation of ground surface vibrations should be carried out using not only appropriately selected measuring equipment (with the required sensitivity and measurement ranges—both in the time domain and frequency domain), but also the measurement bases/setups used for mounting various types of transducers, whose natural frequencies will be outside the frequency range relevant to the possible impact of vibrations on buildings and human beings inside. The paper presents the results of modal analyses carried out with the use of Ansys Engineering Simulation and 3D Design Software (based on the Finite Element Method) for three different types of measuring bases used to coupling accelerometers to the ground. Measuring bases selected for numerical analyses were in the form of a stiff steel spike of an X-shaped cross section (a measuring base No. 1) and two steel spikes of L-shaped cross-sections (a measuring bases No. 2 and No. 3). In the places of screwed accelerometers (three different types of IEPE/ICP transducers of varying sensitivity and a weight) point masses were attached to the measuring bases. As a result of the analyses, it was possible to determine the impact of individual methods of coupling of accelerometers to the ground on the reliability of recorded ground surface accelerations. Among others it was concluded that in each analyzed case the lowest natural frequencies of the measuring bases with attached accelerometers significantly exceeded 100 Hz. The widest frequency band free of resonance vibrations can be provided by the measuring base No. 3 (L50 × 50 × 5).


2020 ◽  
Author(s):  
Emily Farran ◽  
Valerie Critten ◽  
Yannick Courbois ◽  
Emma Campbell ◽  
David Messer

On account of the developmental relationship between motor ability and spatial skills. we investigated the impact of physical disability (PD) on spatial cognition. Fifty-three children with special educational needs including PD took part. The children with PD were divided into those who were wheelchair users (N=34) and those who had independent locomotion (N=19). This division enabled us to additionally determine the impact of limited independent physical exploration on spatial competence (exploration is typically relatively restricted for wheelchair users). Performance of the PD groups was compared to that of typically developing (TD) children who spanned the range of non-verbal ability of the PD groups. Participants completed three spatial tasks; a mental rotation task, a Bee-bot route task and a desktop virtual reality (VR) navigation task. The PD groups broadly demonstrated lower levels of performance than the TD children. However, when performance was considered with reference to participant’s learning difficulties, this demonstrated that levels of impairment across tasks were broadly commensurate with their overall level of non-verbal ability. The exception to this was the performance of the PD wheelchair group on the mental rotation task, which was below that expected for their level of non-verbal ability. Group differences in task approach were evident for the Bee-Bot task; both PD groups showed a different pattern of errors than the TD group. These findings suggest that for children with learning difficulties and PD, the developmental impact of having physical disabilities on spatial ability, over and above the impact of having learning difficulties, is minimal.


Author(s):  
Alexander C. Stahn ◽  
Simone Kühn

AbstractFifty years after the first humans stepped on the Moon, space faring nations have entered a new era of space exploration. NASA’s reference mission to Mars is expected to comprise 1100 days. Deep space exploratory class missions could even span decades. They will be the most challenging and dangerous expeditions in the history of human spaceflight and will expose crew members to unprecedented health and performance risks. The development of adverse cognitive or behavioral conditions and psychiatric disorders during those missions is considered a critical and unmitigated risk factor. Here, we argue that spatial cognition, i.e., the ability to encode representations about self-to-object relations and integrate this information into a spatial map of the environment, and their neural bases will be highly vulnerable during those expeditions. Empirical evidence from animal studies shows that social isolation, immobilization, and altered gravity can have profound effects on brain plasticity associated with spatial navigation. We provide examples from historic spaceflight missions, spaceflight analogs, and extreme environments suggesting that spatial cognition and its neural circuitry could be impaired during long-duration spaceflight, and identify recommendations and future steps to mitigate these risks.


Sign in / Sign up

Export Citation Format

Share Document