scholarly journals Novel Solution for High-Temperature Dielectric Application to Encapsulate High-Voltage Power Semiconductor Devices

Author(s):  
Vivek Chidambaram ◽  
T. Jing ◽  
Ren Bin Yang ◽  
Maziar Shakerzadeh ◽  
Lim Kuan Hoong
2014 ◽  
Vol 2014 (1) ◽  
pp. 000757-000762 ◽  
Author(s):  
Takeshi ANZAI ◽  
Yoshinori MURAKAMI ◽  
Shinji SATO ◽  
Hidekazu TANISAWA ◽  
Kohei HIYAMA ◽  
...  

A high temperature sandwich structured power module for high temperature SiC power semiconductor devices has been accomplished. Problems were found in the high temperature building-up process of the module caused by excess warpage of the ceramic substrate. Also the high temperature operation of the power module brings an excess warpage of the structure caused by parts having different coefficients of thermal expansion (CTEs) from each other. In this paper, some countermeasures to overcome the problems are demonstrated.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1241-1245
Author(s):  
Li Jun Xie ◽  
Xian Zheng Liu ◽  
Jin Yuan Li ◽  
Kun Shan Yu

SiC MOSFET, as a promising power semiconductor devices, has attracted attention from many laboratories and companies for its super performance in high temperature, high voltage and high frequency applications. To protect the devices from overvoltage induced by parasitic inductance in high frequency applications, snubber circuit is a must. In this paper, simulation of snubber circuit in a high frequency PWM inverter is invested, under different numbers of snubber circuit , parasitic parameters, different kinds of load and whether a SiC SBD exsits. Some useful conclusions are obtained to help design more perfect snubber circuit.


2013 ◽  
Vol 10 (4) ◽  
pp. 138-143 ◽  
Author(s):  
Christina DiMarino ◽  
Zheng Chen ◽  
Dushan Boroyevich ◽  
Rolando Burgos ◽  
Paolo Mattavelli

Focused on high-temperature (200°C) operation, this paper seeks to provide insight into state-of-the-art 1.2 kV silicon carbide (SiC) power semiconductor devices; namely the MOSFET, BJT, SJT, and normally-off JFET. This is accomplished by characterizing and comparing the latest generation of these wide bandgap devices from various manufacturers (Cree, GE, ROHM, Fairchild, GeneSiC, and SemiSouth). To carry out this study, the static and dynamic characterization of each device is performed under increasing temperatures (25–200°C). Accordingly, this paper describes the experimental setup used and the different measurements conducted, which include: threshold voltage, current gain, specific on-resistance, and the turn-on and turn-off switching energies of the devices. The driving method used for each device is also detailed. Key trends and observations are reported in an unbiased manner throughout the paper and summarized in the conclusion.


2015 ◽  
Vol 28 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Vaclav Papez ◽  
Jiri Hájek ◽  
Bedrich Kojecký

Electrical capacity of power semiconductor devices is quite an important parameter that can be utilized not only for testing a component itself, but it can also be applied practically; e.g. in series-connected high voltage devices. This paper first analyzes the theoretical voltage distribution on the bases of the polarized p-n junction, as well as the size of capacity. The measurement of the voltage-capacity dependence using the resonance principle is illustrated on the samples of 4kV and 6kV thyristors. The correspondence between theoretical estimation of the capacity, measured voltage capacity dependence based on the resonance principle and experimentally determined by injected charge proves the correctness of the applied procedures and assumptions.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000082-000087 ◽  
Author(s):  
Christina DiMarino ◽  
Zheng Chen ◽  
Dushan Boroyevich ◽  
Rolando Burgos ◽  
Paolo Mattavelli

Focused on high-temperature (200 °C) operation, this paper seeks to provide insight into state-of-the-art 1.2 kV Silicon Carbide (SiC) power semiconductor devices; namely the MOSFET, BJT, SJT, and normally-off JFET. This is accomplished by characterizing and comparing the latest generation of these wide bandgap devices from various manufacturers (Cree, GE, Rohm, Fairchild, GeneSiC, and SemiSouth). To carry out this study, the static and dynamic characterization of each device is performed under increasing temperatures (25–200 °C). Accordingly, this paper describes the experimental setup used and the different measurements conducted, which include: threshold voltage, current gain, specific on-resistance, and the turn-on and turn-off switching energies of the devices. The driving method used for each device is also detailed. Key trends and observations are reported in an unbiased manner throughout the paper and summarized in the conclusion.


Sign in / Sign up

Export Citation Format

Share Document