scholarly journals Thermal Shock Reliability of Isothermally Aged Doped Lead-Free Solder With Semiparametric Estimation

Author(s):  
Anto Raj ◽  
Thomas Sanders ◽  
Sharath Sridhar ◽  
John L. Evans ◽  
Michael J. Bozack ◽  
...  
2017 ◽  
Vol 62 (2) ◽  
pp. 1063-1066
Author(s):  
A. Molnar ◽  
M. Benke ◽  
Z. Gacsi

AbstractIn this manuscript, correlations were searched for between pin misalignments relative to PCB bores and crack propagation after cyclic thermal shock tests in THT solder joints produced from lead-free solder alloys. In total, 7 compositions were examined including SAC solders with varying Ag, Cu and Ni contents. The crack propagation was initiated by cyclic thermal shock tests with 40°C / +125°C temperature profiles. Pin misalignments relative to the bores were characterized with three attributes obtained from one section of the examined solder joints. Cracks typically originated at the solder/pin or solder/bore interfaces and propagated within the solder. It was shown that pin misalignments did not have an effect on crack propagation, thus, the solder joints’ lifetime.


Author(s):  
Kunal Goray ◽  
Saketh Mahalingam ◽  
Amit Shah ◽  
Abhijit Dasgupta

Accelerated thermal cycling tests are used to ascertain the reliability of solder interconnects in electronics assemblies. These tests typically last a few months and therefore, are highly resource intensive. Thermal shock tests on the other hand are faster but have been found to be ineffective in accelerating thermal cycling failures for eutectic tin lead solder. In this paper, thermal shock testing is proposed as an alternative to conventional thermal cycling testing for lead-free solder interconnects using Sn, Ag and Cu (SAC) solder. Results from the thermal shock and thermal cycling testing of Ball-Grid-Array (BGA) components are presented. Failure analyses of the solder joints reveal the failure mode for thermal shock in comparison to thermal cycling testing. Numerical modeling results for the thermal cycling and thermal shock testing for lead free and eutectic lead solder are then presented and discussed. The simulation results agree with the experiments and theory is proposed to account for the similar trends between thermal cycling and thermal shock testing for lead free solder.


2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


Sign in / Sign up

Export Citation Format

Share Document