scholarly journals Small-Signal Capacitance and Current Parameter Modeling in Large-Scale High-Frequency Graphene Field-Effect Transistors

2013 ◽  
Vol 60 (6) ◽  
pp. 1799-1806 ◽  
Author(s):  
Gennady I. Zebrev ◽  
Alexander A. Tselykovskiy ◽  
Daria K. Batmanova ◽  
Evgeny V. Melnik
2007 ◽  
Vol 121-123 ◽  
pp. 693-696 ◽  
Author(s):  
Leonardo C. Castro ◽  
D.L. Pulfrey ◽  
D.L. John

The high-frequency capability of carbon nanotube field-effect transistors is investigated by simulating the small-signal performance of a device with negative-barrier Schottky contacts for the source and drain, and with a small, ungated region of nanotube between the end contacts and the edge of the wrap-around gate electrode. The overall structure is shown to exhibit resonant behaviour, which leads to a significant bias dependence of the small-signal capacitances and transconductance. This could lead to high-frequency figures of merit (fT and fmax) in the terahertz regime.


1970 ◽  
Vol 6 (18) ◽  
pp. 590
Author(s):  
P.U. Calzolari ◽  
S. Graffi ◽  
A. Mazzone

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3121
Author(s):  
Monica La Mura ◽  
Patrizia Lamberti ◽  
Vincenzo Tucci

The interest in graphene-based electronics is due to graphene’s great carrier mobility, atomic thickness, resistance to radiation, and tolerance to extreme temperatures. These characteristics enable the development of extremely miniaturized high-performing electronic devices for next-generation radiofrequency (RF) communication systems. The main building block of graphene-based electronics is the graphene-field effect transistor (GFET). An important issue hindering the diffusion of GFET-based circuits on a commercial level is the repeatability of the fabrication process, which affects the uncertainty of both the device geometry and the graphene quality. Concerning the GFET geometrical parameters, it is well known that the channel length is the main factor that determines the high-frequency limitations of a field-effect transistor, and is therefore the parameter that should be better controlled during the fabrication. Nevertheless, other parameters are affected by a fabrication-related tolerance; to understand to which extent an increase of the accuracy of the GFET layout patterning process steps can improve the performance uniformity, their impact on the GFET performance variability should be considered and compared to that of the channel length. In this work, we assess the impact of the fabrication-related tolerances of GFET-base amplifier geometrical parameters on the RF performance, in terms of the amplifier transit frequency and maximum oscillation frequency, by using a design-of-experiments approach.


The Analyst ◽  
2018 ◽  
Vol 143 (2) ◽  
pp. 580-580
Author(s):  
Charles Mackin ◽  
Tomás Palacios

Correction for ‘Large-scale sensor systems based on graphene electrolyte-gated field-effect transistors’ by Charles Mackin, et al., Analyst, 2016, 141, 2704–2711.


2020 ◽  
Vol 2 (9) ◽  
pp. 4179-4186 ◽  
Author(s):  
Pedro C. Feijoo ◽  
Francisco Pasadas ◽  
Marlene Bonmann ◽  
Muhammad Asad ◽  
Xinxin Yang ◽  
...  

A drift–diffusion model including self-heating effects in graphene transistors to investigate carrier velocity saturation for optimal high frequency performance.


2010 ◽  
Vol 21 (34) ◽  
pp. 345301 ◽  
Author(s):  
Sung Myung ◽  
Sungjong Woo ◽  
Jiwoon Im ◽  
Hyungwoo Lee ◽  
Yo-Sep Min ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document