Low-Frequency Noise and Random Telegraph Noise on Near-Ballistic III-V MOSFETs

2015 ◽  
Vol 62 (11) ◽  
pp. 3508-3515 ◽  
Author(s):  
Mengwei Si ◽  
Nathan J. Conrad ◽  
Sanghoon Shin ◽  
Jiangjiang Gu ◽  
Jingyun Zhang ◽  
...  
Author(s):  
Jooyoung Pyo ◽  
Akio Ihara ◽  
Shun-ichiro OHMI

Abstract This paper investigated the low frequency noise (LFN) utilizing 1/f noise and random telegraph noise (RTN) characteristics of Hf-based metal/oxide/nitride/oxide/silicon (MONOS) nonvolatile memory (NVM) device with HfO2 and HfON tunneling layer (TL). The low frequency noise spectral density (SID ) was investigated to evaluate the interface characteristics with fresh and after programming/erasing (P/E) cycles of 104. Both devices show similar slope of ~1/f in all of the frequency regions. Although HfON TL shows high SID compared to HfO2 TL, increased ratio is 15.4 which is low compared to HfO2 TL of 21.3. As decreasing the channel length from 10 to 2 μm, HfON TL shows small increased ratio of SID . Due to the nitrided characteristics, HfON TL suppress the degradation of interface. Finally, it is found that trap site of HfO2 TL is located near the interface by RTN measurement with capture (τC) and emission time constant (τE).


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1759
Author(s):  
Akinobu Teramoto

Methods for evaluating low-frequency noise, such as 1/f noise and random telegraph noise, and evaluation results are described. Variability and fluctuation are critical in miniaturized semiconductor devices because signal voltage must be reduced in such devices. Especially, the signal voltage in multi-bit memories must be small. One of the most serious issues in metal-oxide-semiconductor field-effect-transistors (MOSFETs) is low-frequency noise, which occurs when the signal current flows at the interface of different materials, such as SiO2/Si. Variability of low-frequency noise increases with MOSFET shrinkage. To assess the effect of this noise on MOSFETs, we must first understand their characteristics statistically, and then, sufficient samples must be accurately evaluated in a short period. This study compares statistical evaluation methods of low-frequency noise to the trend of conventional evaluation methods, and this study’s findings are presented.


2020 ◽  
pp. 551-593
Author(s):  
Sandip Tiwari

This chapter examines noise, another example of cause and chance at work, and an example of the statistical fluctuations in the response arising from random events. Approaches to understanding randomness embedded in signals are discussed along with the notion of ergodic behavior, autocorrelation and the use of the Wiener-Khintchin theorem. Fluctuations and noise in semiconductors are analyzed by exploring charge transport between plates under scattering. The quantum and thermodynamic links at resonance are emphasized. The Nyquist relationship, a very general relationship, is derived. Partition thermal noise under limited channels is explored, and shot noise is discussed. Low frequency noise arising as random telegraph noise due to charge trapping and detrapping is analyzed. Noise in a parameter—resistance, for example—can be due to multiple interactions. An example of this is resistance fluctuation due to mobility and carrier fluctuations, which in many materials can be parameterized through the Hooge parameter.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 120-127
Author(s):  
Mikhail D. Vorobyev ◽  
◽  
Dmitriy N. Yudaev ◽  
Andrey Yu. Zorin ◽  
◽  
...  

1999 ◽  
Author(s):  
Charles K. Birdsall ◽  
J. P. Varboncoeur ◽  
P. J. Christensen

Sign in / Sign up

Export Citation Format

Share Document