scholarly journals Comparison of Thermal Stress During Short-Circuit in Different Types of 1.2-kV SiC Transistors Based on Experiments and Simulations

2021 ◽  
Vol 68 (3) ◽  
pp. 2608-2616
Author(s):  
Diane-Perle Sadik ◽  
Juan Colmenares ◽  
Jang-Kwon Lim ◽  
Mietek Bakowski ◽  
Hans-Peter Nee
2017 ◽  
Vol 897 ◽  
pp. 595-598
Author(s):  
Diane Perle Sadik ◽  
Jang Kwon Lim ◽  
Juan Colmenares ◽  
Mietek Bakowski ◽  
Hans Peter Nee

The temperature evolution during a short-circuit in the die of three different Silicon Carbide1200-V power devices is presented. A transient thermal simulation was performed based on the reconstructedstructure of commercially available devices. The location of the hottest point in the device iscompared. Finally, the analysis supports the necessity to turn off short-circuit events rapidly in orderto protect the device after a fault.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2324 ◽  
Author(s):  
Jorge Ardila-Rey ◽  
Aldo Barrueto ◽  
Alvaro Zerene ◽  
Bruno Castro ◽  
José Ulson ◽  
...  

Ideally, an insulation system must be capable of electrically insulating the active components of a machine or device subjected to high voltages. However, due to the presence of polluting agents or imperfections inside or on the surface of the insulation, small current pulses called partial discharges (PDs) are common, which partially short-circuit the insulation and cause it to lose its insulating properties, and thus its insulation capacity, over time. In some cases, measurements of this phenomenon are limited by the type of sensor used; if it is not adequate, it can distort the obtained results, which can lead to a misdiagnosis of the state of the device. The inductive loop sensor has experimentally been demonstrated to be capable of properly measuring different types of PDs. However, because of its current design, there are several practical limitations on its use in real devices or environments. An example is the presence of a primary conductor located at a fixed distance from the sensor, through which PD pulses must flow for the sensor to capture them. In this article, the sensor’s behavior is studied at different separation distances from the line through which the PD pulses flow. In addition, the measuring capacity of the sensor is tested by removing the presence of the primary conductor and placing the sensor directly over the line through which the PD pulses of a real device flow.


2014 ◽  
Vol 986-987 ◽  
pp. 1914-1917
Author(s):  
Pei Ming Pan ◽  
Huan Lian ◽  
Fei Xiang Hui ◽  
Wei Pu Tan

Analysis the important significance of transformer short-circuit current calculation for the stable operation of power system. Lead to three different types of transformer short-circuit current calculation methods, this literature uses a simplified example to compare the characters among three methods. Meanwhile, calculation by using the theory to get a quantitative range of simplified method. The calculation results and theory support each other, finally, summarizing the application range of the three methods, and offering a reference for reasonable selection of short-circuit current methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dominik Lausch ◽  
Christian Hagendorf

In this contribution the influence of different types of recombination-active defects on the integral electrical properties of multicrystalline Si solar cells is investigated. Based on a previous classification scheme related to the luminescence behavior of crystal defects, Type-A and Type-B defects are locally distinguished. It is shown that Type-A defects, correlated to iron contaminations, are dominating the efficiency by more than 20% relative through their impact on the short circuit current ISC and open circuit voltage VOC in standard Si material (only limited by recombination active crystal defects). Contrarily, Type-B defects show low influence on the efficiency of 3% relative. The impact of the detrimental Type-A defects on the electrical parameters is studied as a function of the block height. A clear correlation between the area fraction of Type-A defects and both the global Isc and the prebreakdown behavior (reverse current) in voltage regime-2 (−11 V) is observed. An outlier having an increased full-area recombination activity is traced back to dense inter- and intragrain nucleation of Fe precipitates. Based on these results it is concluded that Type-A defects are the most detrimental defects in Si solar cells (having efficiencies > 15%) and have to be prevented by optimized Si material quality and solar cell process conditions.


Author(s):  
Muhammad Adnan ◽  
Zulkurnain Adul Malek ◽  
Nur Syazwani Mohd Din ◽  
Muhammad Irfan Jambak ◽  
Zainuddin Nawawi ◽  
...  

<table width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="387"><p>The role of the grounding system in the safety of the power system and protection of personnel is obvious during an unexpected short circuit or lightning discharge at the substation. The aim of this work is to analyze the effects of several parameters: lightning impulse front time, soil resistivity and types of grid materials on the grounding system of the Substation. The ground potential rise (GPR), touch voltage and step voltage of a 50 m x 60 m grounding grid buried at a depth of 0.5 m were computed using CDEGS when injected by impulse with different front times. Results show that the shorter the front time of lightning impulse waveform, the higher the value of GPR, touch voltage and step voltage. Meanwhile, when the value of soil resistivity is increased, the value of GPR, touch voltage and step voltage is also increased. Lastly, different types of grid conductor materials give different values of GPR, touch voltage and step voltage. However, it can be said that the differences are too small to be of any significance.</p><p> </p></td></tr></tbody></table>


Author(s):  
Faisal K. Abdulhussein ◽  
Qais Frayyeh ◽  
Marwan Al-Shaikhli ◽  
Zahraa F. Jawad ◽  
Mohammed Salman5

Autoclaved aerated concrete (Called Thermostone in Iraq) is one of the popular building materials that are used in various purposes in construction industries. It is factory-made material that can be moulded into blocks which can be used in framework buildings. However, these buildings are under the risk of fire since it has different cusses such as arson and electrical short circuit. It is important to find ways to improve counter such phenomenon. Therefore the objective of this paper is investigating the fire resistance performance of Thermostone with and without plastering. Five different samples were used for the test, four of them were covered with different types of plastering. Three tests were employed for this study: Compressive, absorption, and density test. For all tests, the samples were exposed to elevated temperatures from 250 °C to 900 °C. It was shown that plastered samples have demonstrated a higher fire resistance and lower absorption rate than non-plastered ones.


2021 ◽  
Author(s):  
◽  
Anne Wietheger

<p>Coral bleaching, the loss of symbiotic dinoflagellate algae (genus Symbiodinium) and/or photosynthetic algal pigments from their coral host has become a regular occurrence in the last few decades due to increasing seawater temperatures. A key consideration in bleaching susceptibility is the symbiotic alga‘s physiology and its capacity to deal with abiotic stress; oxidative stress is of particular interest given that this can arise from thermally induced photosynthetic dysfunction. The aim of this study was to compare the effects of thermal and oxidative stress on the photosynthetic performance of a range of Symbiodinium clades and types (i.e. sub-clades) in different states of symbiosis (in hospite, freshly isolated and in culture). Whether the responses to these two stressors are related was investigated; in particular, it was hypothesised that more thermally sensitive types would be more sensitive to oxidative stress. Furthermore, the study aimed to elucidate the role of antioxidants in the observed stress responses. The specific objectives were 1) to establish whether different types of cultured Symbiodinium have dissimilar sensitivities to oxidative stress, induced by hydrogen peroxide (H₂O₂), and whether these are related to their thermal sensitivities; 2) measure the activity and relative amounts of specific reactive oxygen species (ROS) in different types of cultured Symbiodinium in response to thermal and oxidative stress induced by H₂O₂; 3) measure total antioxidant activity in different cultured Symbiodinium types when under oxidative stress; and 4) compare and contrast the responses of different Symbiodinium types to thermal and oxidative stress when in hospite (i.e. in corals) and freshly isolated. In this study, I showed that different Symbiodinium clades and types can differ widely in their responses to both thermal and oxidative stress. This was indicated by photosynthetic performance measured by chlorophyll fluorescence, and differences in the quantity of specific ROS measured via fluorescent probes and flow cytometry. For instance, when adding H₂O₂ to Symbiodinium F1, originally from Hawaii, a decrease of > 99% in maximum quantum yield (Fv/Fm) was displayed, while there was no change in Fv/Fm in the temperate Symbiodinium A1, freshly isolated from the anemone Anthopleura aureoradiata from New Zealand. When comparing the difference in ROS production between the control (26 °C) and a thermal stress treatment (35 °C), type E1 from Okinawa showed no difference in any of the measured ROS. In contrast, a different A1 type from the Gulf of Aqaba displayed an increase in the overall production of ROS, and more specifically in the production of superoxide. Symbiodinium types also displayed differential oxidative stress resistance, which was apparent from their antioxidant activities; in particular, total antioxidant capacity was measured by the ferric reducing antioxidant potential (FRAP) and cellular antioxidant activity (CAA) assays. For example, the aforementioned Symbiodinium types, A1 from the Gulf of Aqaba and F1, increased their antioxidant activities with increasing H₂O₂ concentrations. Meanwhile, type E1 displayed higher baseline levels of antioxidants in comparison to the other two types (A1, F1), which then decreased with increasing H₂O₂. Specific activities of superoxide dismutase and ascorbate peroxidase were also measured. Stress susceptibility appears to be related both to Symbiodinium type and geographic origin, but greater sensitivity to thermal stress did not necessarily correlate with greater susceptibility to oxidative stress. The exact relationship between thermal and oxidative sensitivities in Symbiodinium spp. remains elusive, but it is suggested that different types might follow different strategies for dealing with stress. I propose that some Symbiodinium types rely more on photo-protection when exposed to thermal stress (and hence cope less with oxidative stress), while other types depend more on antioxidants and oxidative stress resistance. The latter might be the better strategy for types from more variable environments, such as higher latitude reefs or intertidal regions, where potentially stressful conditions may be encountered more frequently. This study gives new insights into the variability of stress responses in the genus Symbiodinium, and the complex relationship between thermal and oxidative stress. The implications of these findings for coral bleaching susceptibility and the biogeographic distribution of different Symbiodinium types are discussed.</p>


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1252
Author(s):  
Junqing Li ◽  
Luo Wang

Rotor winding inter-turn short circuit a common fault in hydro-generators. This fault would change the temperature, stress, and other thermal fields of a rotor and threaten the safe operation of the generator. In this paper, the Three Gorges hydro-generator is taken as an example. Mathematical models of three-dimensional temperature field and thermal stress field of rotor magnetic poles are established based on heat transfer theory and solved by finite element method. The temperature field, thermal deformation, and thermal stress distribution of magnetic poles in rotor winding inter-turn short circuit are calculated. On the basis of the calculation, the effects of the different turn numbers and positions of short circuit on the temperature, thermal deformation, and thermal stress of rotor magnetic poles are further studied. It is concluded that the thermal stress of the winding adjacent to the shorted turn would decrease, the thermal stress of the winding farther away from the shorted winding would increase, and so on. The results of this paper can provide references for inter-turn short circuit fault diagnosis and lay a foundation for the further studies of related faults.


Clean Energy ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 222-226
Author(s):  
Gang Sun ◽  
Xiaohe Tu ◽  
Rui Wang

Abstract In order to accurately select photovoltaic modules under different climatic conditions, three kinds of polycrystalline silicon photovoltaic modules were prepared for this study using different properties of packaging materials and two typical climatic zones of China were selected for installation and operation of these photovoltaic (PV) modules. The photoelectric parameters (maximum power, open-circuit voltage, short-circuit current, etc.) and electroluminescence images of these modules were analysed before and after their operation for 6 months. The study found that the performance of PV modules in different climatic regions shows different decay tendency and degradation mechanism. There was a significant difference in the degradation of the three different types of PV modules in the sub-humid-hot region (Suzhou, Jiangsu); two kinds of photovoltaic modules using relatively poorly performing package materials showed significant potential-induced degradation effects. However, the degradation trend of the three different types of PV modules in the warm-temperate region (Kenli, Shandong) was consistent and no significant potential-induced degradation effect was observed.


Sign in / Sign up

Export Citation Format

Share Document