scholarly journals WindFlow: High-Speed Continuous Stream Processing with Parallel Building Blocks

Author(s):  
Gabriele Mencagli ◽  
Massimo Torquati ◽  
Andrea Cardaci ◽  
Alessandra Fais ◽  
Luca Rinaldi ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hitesh Agarwal ◽  
Bernat Terrés ◽  
Lorenzo Orsini ◽  
Alberto Montanaro ◽  
Vito Sorianello ◽  
...  

AbstractElectro-absorption (EA) waveguide-coupled modulators are essential building blocks for on-chip optical communications. Compared to state-of-the-art silicon (Si) devices, graphene-based EA modulators promise smaller footprints, larger temperature stability, cost-effective integration and high speeds. However, combining high speed and large modulation efficiencies in a single graphene-based device has remained elusive so far. In this work, we overcome this fundamental trade-off by demonstrating the 2D-3D dielectric integration in a high-quality encapsulated graphene device. We integrated hafnium oxide (HfO2) and two-dimensional hexagonal boron nitride (hBN) within the insulating section of a double-layer (DL) graphene EA modulator. This combination of materials allows for a high-quality modulator device with high performances: a ~39 GHz bandwidth (BW) with a three-fold increase in modulation efficiency compared to previously reported high-speed modulators. This 2D-3D dielectric integration paves the way to a plethora of electronic and opto-electronic devices with enhanced performance and stability, while expanding the freedom for new device designs.


2021 ◽  
Vol 255 ◽  
pp. 01002
Author(s):  
Daniel Benedikovic ◽  
Leopold Virot ◽  
Guy Aubin ◽  
Jean-Michel Hartmann ◽  
Farah Amar ◽  
...  

Optical photodetectors are at the forefront of photonic research since the rise of integrated optics. Photodetectors are fundamental building blocks for chip-scale optoelectronics, enabling conversion of light into an electrical signal. Such devices play a key role in many surging applications from communication and computation to sensing, biomedicine and health monitoring, to name a few. However, chip integration of optical photodetectors with improved performances is an on-going challenge for mainstream optical communications at near-infrared wavelengths. Here, we present recent advances in heterostructured silicon-germanium-silicon p-i-n photodetectors, enabling high-speed detection on a foundry-compatible monolithic platform.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2612 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Alvise Bagolini ◽  
Flavio Giacomozzi ◽  
Elena Bochkova ◽  
...  

RF-MEMS, i.e., Micro-Electro-Mechanical Systems (MEMS) for Radio Frequency (RF) passive components, exhibit interesting characteristics for the upcoming 5G and Internet of Things (IoT) scenarios, in which reconfigurable broadband and frequency-agile devices, like high-order switching units, tunable filters, multi-state attenuators, and phase shifters will be necessary to enable mm-Wave services, small cells, and advanced beamforming. In particular, satellite communication systems providing high-speed Internet connectivity utilize the K and Ka bands, which offer larger bandwidth compared to lower frequencies. This paper focuses on two design concepts of multi-state phase shifter designed and manufactured in RF-MEMS technology. The networks feature 4 switchable stages (16 states) and are developed for the K and Ka bands. The proposed phase shifters are realized in a surface micromachining RF-MEMS technology and the experimentally measured parameters are compared with Finite Element Method (FEM) multi-physical electromechanical and RF simulations. The simulated phase shifts at both the operating bands fit well the measured value, despite the measured losses (S21) are larger than 5–7 dB if compared to simulations. However, such a non-ideality has a technological motivation that is explained in the paper and that will be fixed in the manufacturing of future devices.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 733
Author(s):  
C Priyanka ◽  
N Manoj Kumar ◽  
L Sai Priya ◽  
B Vaishnavi ◽  
M Rama Krishna

Convolution is having extensive area of application in Digital Signal Processing. Convolution supports to evaluate the output of a system with arbitrary input, with information of impulse response of the system.  Linear systems features are totally stated by the systems impulse response, as ruled by the mathematics of convolution. Primary necessity of any application to work fast is that rise in the speed of their basic building block. Multiplier, adder is said to be the important building blocks in the process of convolution. As these blocks consumes plentiful time to obtain the response of the system.  Several methods are designed to progress the speed of the Multiplier and adder, among all GDI (Gate Diffusion Input) is under emphasis because of faster working and low power consumption. In this paper GDI based convolution is implemented using Vedic multiplier and adder in T-SPICE Software which increases the speed and consumes less power compared to CMOS technology. 


2011 ◽  
Vol 58 (3) ◽  
pp. 792-801 ◽  
Author(s):  
Federico Baronti ◽  
Esa Petri ◽  
Sergio Saponara ◽  
Luca Fanucci ◽  
Roberto Roncella ◽  
...  

2011 ◽  
Vol 1337 ◽  
Author(s):  
Roland Rosezin ◽  
Eike Linn ◽  
Lutz Nielen ◽  
Carsten Kügeler ◽  
Rainer Bruchhaus ◽  
...  

ABSTRACTIn this report, the fabrication and electrical characterization of fully vertically integrated complementary resistive switches (CRS), which consist of two anti-serially connected Cu-SiO2 memristive elements, is presented. The resulting CRS cells are initialized by a simple procedure and show high uniformity of resistance states afterwards. Furthermore, the CRS cells show high switching speeds below 50 ns, making them excellent building blocks for next generation non-volatile memory based on passive nanocrossbar arrays.


Sign in / Sign up

Export Citation Format

Share Document