scholarly journals A large-scale testbed for reproducible ad hoc protocol evaluations

Author(s):  
H. Lundgren ◽  
D. Lundberg ◽  
J. Nielsen ◽  
E. Nordstrom ◽  
C. Tschudin
Keyword(s):  
Ad Hoc ◽  
Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Olivier Fradette ◽  
Charles Marty ◽  
Pascal Tremblay ◽  
Daniel Lord ◽  
Jean-François Boucher

Allometric equations use easily measurable biometric variables to determine the aboveground and belowground biomasses of trees. Equations produced for estimating the biomass within Canadian forests at a large scale have not yet been validated for eastern Canadian boreal open woodlands (OWs), where trees experience particular environmental conditions. In this study, we harvested 167 trees from seven boreal OWs in Quebec, Canada for biomass and allometric measurements. These data show that Canadian national equations accurately predict the whole aboveground biomass for both black spruce and jack pine trees, but underestimated branches biomass, possibly owing to a particular tree morphology in OWs relative to closed-canopy stands. We therefore developed ad hoc allometric equations based on three power models including diameter at breast height (DBH) alone or in combination with tree height (H) as allometric variables. Our results show that although the inclusion of H in the model yields better fits for most tree compartments in both species, the difference is minor and does not markedly affect biomass C stocks at the stand level. Using these newly developed equations, we found that carbon stocks in afforested OWs varied markedly among sites owing to differences in tree growth and species. Nine years after afforestation, jack pine plantations had accumulated about five times more carbon than black spruce plantations (0.14 vs. 0.80 t C·ha−1), highlighting the much larger potential of jack pine for OW afforestation projects in this environment.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Phuoc Duc Nguyen ◽  
Lok-won Kim

People nowadays are entering an era of rapid evolution due to the generation of massive amounts of data. Such information is produced with an enormous contribution from the use of billions of sensing devices equipped with in situ signal processing and communication capabilities which form wireless sensor networks (WSNs). As the number of small devices connected to the Internet is higher than 50 billion, the Internet of Things (IoT) devices focus on sensing accuracy, communication efficiency, and low power consumption because IoT device deployment is mainly for correct information acquisition, remote node accessing, and longer-term operation with lower battery changing requirements. Thus, recently, there have been rich activities for original research in these domains. Various sensors used by processing devices can be heterogeneous or homogeneous. Since the devices are primarily expected to operate independently in an autonomous manner, the abilities of connection, communication, and ambient energy scavenging play significant roles, especially in a large-scale deployment. This paper classifies wireless sensor nodes into two major categories based the types of the sensor array (heterogeneous/homogeneous). It also emphasizes on the utilization of ad hoc networking and energy harvesting mechanisms as a fundamental cornerstone to building a self-governing, sustainable, and perpetually-operated sensor system. We review systems representative of each category and depict trends in system development.


Author(s):  
Cody Minks ◽  
Anke Richter

AbstractObjectiveResponding to large-scale public health emergencies relies heavily on planning and collaboration between law enforcement and public health officials. This study examines the current level of information sharing and integration between these domains by measuring the inclusion of public health in the law enforcement functions of fusion centers.MethodsSurvey of all fusion centers, with a 29.9% response rate.ResultsOnly one of the 23 responding fusion centers had true public health inclusion, a decrease from research conducted in 2007. Information sharing is primarily limited to information flowing out of the fusion center, with little public health information coming in. Most of the collaboration is done on a personal, informal, ad-hoc basis. There remains a large misunderstanding of roles, capabilities, and regulations by all parties (fusion centers and public health). The majority of the parties appear to be willing to work together, but there but there is no forward momentum to make these desires a reality. Funding and staffing issues seem to be the limiting factor for integration.ConclusionThese problems need to be urgently addressed to increase public health preparedness and enable a decisive and beneficial response to public health emergencies involving a homeland security response.


Author(s):  
Hamed Shah-Mansouri ◽  
Babak Hossein Khalaj ◽  
Seyed Pooya Shariatpanahi ◽  
Javier Del Ser ◽  
Susana Pérez-Sánchez

Author(s):  
Lang Ruan ◽  
Jin Chen ◽  
Qiuju Guo ◽  
Xiaobo Zhang ◽  
Yuli Zhang ◽  
...  

In scenarios such as natural disasters and military strike, it is common for unmanned aerial vehicles (UAVs) to form groups to execute reconnaissance and surveillance. To ensure the effectiveness of UAV communications, repeated resource acquisition issues and transmission mechanism design need to be addressed urgently. In this paper, we build an information interaction scenario in a Flying Ad-hoc network (FANET). The data transmission problem with the goal of throughput maximization is modeled as a coalition game framework. Then, a novel mechanism of coalition selection and data transmission based on group-buying is investigated. Since large-scale UAVs will generate high transmission overhead due to the overlapping resource requirements, we propose a resource allocation optimization method based on distributed data content. Comparing existing works, a data transmission and coalition formation mechanism is designed. Then the system model is classified into graph game and coalition formation game. Through the design of the utility function, we prove that both games have stable solutions. We also prove the convergence of the proposed approach with coalition order and Pareto order. Binary log-linear learning based coalition selection algorithm (BLL-CSA) is proposed to explore the stable coalition partition of system model. Simulation results show that the proposed data transmission and coalition formation mechanism can achieve higher data throughput than the other contrast algorithms.


Sign in / Sign up

Export Citation Format

Share Document