scholarly journals Studying the Effects of Nucleating Agents on Texture Modification of Puffed Corn-Fish Snack

2014 ◽  
Vol 79 (2) ◽  
pp. E178-E183 ◽  
Author(s):  
Hamid Reza Shahmohammadi ◽  
Jamilah Bakar ◽  
Russly Abdul Rahman ◽  
Noranizan Mohd Adzhan
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1094
Author(s):  
Bastian Klose ◽  
Daniel Kremer ◽  
Merve Aksit ◽  
Kasper P. van der Zwan ◽  
Klaus Kreger ◽  
...  

Polystyrene foams have become more and more important owing to their lightweight potential and their insulation properties. Progress in this field is expected to be realized by foams featuring a microcellular morphology. However, large-scale processing of low-density foams with a closed-cell structure and volume expansion ratio of larger than 10, exhibiting a homogenous morphology with a mean cell size of approximately 10 µm, remains challenging. Here, we report on a series of 4,4′-diphenylmethane substituted bisamides, which we refer to as kinked bisamides, acting as efficient supramolecular foam cell nucleating agents for polystyrene. Self-assembly experiments from solution showed that these bisamides form supramolecular fibrillary or ribbon-like nanoobjects. These kinked bisamides can be dissolved at elevated temperatures in a large concentration range, forming dispersed nano-objects upon cooling. Batch foaming experiments using 1.0 wt.% of a selected kinked bisamide revealed that the mean cell size can be as low as 3.5 µm. To demonstrate the applicability of kinked bisamides in a high-throughput continuous foam process, we performed foam extrusion. Using 0.5 wt.% of a kinked bisamide yielded polymer foams with a foam density of 71 kg/m3 and a homogeneous microcellular morphology with cell sizes of ≈10 µm, which is two orders of magnitude lower compared to the neat polystyrene reference foam with a comparable foam density.


2019 ◽  
Vol 55 (4) ◽  
pp. 1436-1450 ◽  
Author(s):  
Jan Broda ◽  
Marcin Baczek ◽  
Janusz Fabia ◽  
Dorota Binias ◽  
Ryszard Fryczkowski

Abstract During the investigations, functionalization of graphene oxide synthesized using modified Hummers’ method and its reduced form was performed. Mixtures of graphene oxide and reduced graphene oxide with pimelic acid and calcium hydroxide were prepared for functionalization. During the reaction, the molecules of pimelic acid were attached to the surface of graphene sheets. By forming links between the carboxylic groups of pimelic acid and graphene oxide, the durable connection was achieved. The functionalized graphene oxide and the reduced graphene oxide were used as additives in isotactic polypropylene crystallization. The influence of additives on crystallisation in non-isothermal conditions was examined using polarized optical microscopy and differential scanning calorimetry. The effect of the additives on the polypropylene structure was analysed using wide-angle X-ray scattering. For both functionalized compounds, the nucleating ability towards β-form of polypropylene was detected. Both additives showed the increase in the nucleation rate and promotion of growth of the β-form crystals. Nucleation efficiency similar to other nucleating agents used in the crystallization of the β-form of polypropylene was revealed.


2018 ◽  
Vol 923 ◽  
pp. 56-60 ◽  
Author(s):  
Mochamad Chalid ◽  
Evana Yuanita ◽  
Ghiska Ramahdita ◽  
Jaka Fajar Fatriansyah

Impact Polypropylene Copolymer (IPC) is one of the PP type which is widely used. IPC was made with addition of ethylene in PP which decreases PP crystallinity. Many efforts have been made to improve the properties of PP crystallinity by addition of nucleating agents. In this study, we use Arenga Pinnata “Ijuk” fiber as PP nucleating agent. In order to determine the effect of “Ijuk” fiber as nucleating agents in kinetics aspect, we used DSC measurement based on Avrami equation. The results showed that the addition of ijuk decreases crystallizationhalf timeand dimension of crystal growth which indicate the effects of “Ijuk” fiber as a nucleating agent.


2005 ◽  
Vol 38 (9) ◽  
pp. 3688-3695 ◽  
Author(s):  
Markus Blomenhofer ◽  
Sandra Ganzleben ◽  
Doris Hanft ◽  
Hans-Werner Schmidt ◽  
Magnus Kristiansen ◽  
...  
Keyword(s):  

2015 ◽  
Vol 30 (3) ◽  
pp. 344-349
Author(s):  
S.-W. Wang ◽  
Y.-T. Leng ◽  
J. Jiang ◽  
G.-Q. Zheng ◽  
Q. Li

1990 ◽  
Vol 5 (5) ◽  
pp. 1095-1103 ◽  
Author(s):  
Ann M. Kazakos ◽  
Sridhar Komarneni ◽  
Rustum Roy

Three series of cordierite powders were prepared by the sol-gel route: a single phase (monophasic) gel prepared from alkoxides, a nominally triphasic nanocomposite gel made with two nanosized powders and one solution phase, and a truly compositionally triphasic nanocomposite gel prepared from three nanosized powders. Crystalline α-cordierite seeds were also incorporated with the gels and their effectiveness as nucleating agents was investigated and found to lower the crystallization temperature of α-cordierite by 125–150°C. The densification behavior of powder compacts was examined and alterations made to the heat treatment until optimum conditions were found. The truly triphasic compact sintered at 1300°C for 2 h resulted in 100% of theoretical density whereas the nominally triphasic and monophasis pellets densified to 96% and 80%, respectively. The enhanced densification achieved with powder compacct prepared for triphasic nanocomposite gels is due to part to the excess free energy of the three components.


Sign in / Sign up

Export Citation Format

Share Document