scholarly journals Competition and facilitation may lead to asymmetric range shift dynamics with climate change

2017 ◽  
Vol 23 (9) ◽  
pp. 3921-3933 ◽  
Author(s):  
Ailene Ettinger ◽  
Janneke HilleRisLambers
2021 ◽  
Author(s):  
J. Christopher D. Terry ◽  
Jacob D. O’Sullivan ◽  
Axel G. Rossberg

AbstractRecent developments in understanding and predicting species responses to climate change have emphasised the importance of both environmental variability and consideration of the wider biotic community. To date, the interaction between the two has received less attention. However, considerable bodies of theory and empirical results suggest that multi-species consequences of variability can have strong impacts on range limits and the speed of range shifts. Here we demonstrate how biotic interactions and temporal variability can act together to influence range shift dynamics and highlight the need to understand these interactions in order to predict how species will respond to global change. We emphasise the value and utility of partitioning approaches applied to parameterised models to determine the direction and relative importance and direct of these forces in empirical systems.AuthorshipJCDT wrote the manuscript and built the models. All authors contributed significantly to the editing and manuscript development.FundingThe work was supported by NERC grant NE/T003510/1Data Sharing and Data AccessibilityCode to generate all results is publicly available at https://github.com/jcdterry/ClimateVar_BioticInts and should the manuscript be accepted will be permanently archived. The paper contains no new datasets.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 470
Author(s):  
Martha Charitonidou ◽  
Konstantinos Kougioumoutzis ◽  
John M. Halley

Climate change is regarded as one of the most important threats to plants. Already species around the globe are showing considerable latitudinal and altitudinal shifts. Helen’s bee orchid (Ophrys helenae), a Balkan endemic with a distribution center in northwestern Greece, is reported to be expanding east and southwards. Since this southeastern movement goes against the usual expectations, we investigated via Species Distribution Modelling, whether this pattern is consistent with projections based on the species’ response to climate change. We predicted the species’ future distribution based on three different climate models in two climate scenarios. We also explored the species’ potential distribution during the Last Interglacial and the Last Glacial Maximum. O. helenae is projected to shift mainly southeast and experience considerable area changes. The species is expected to become extinct in the core of its current distribution, but to establish a strong presence in the mid- and high-altitude areas of the Central Peloponnese, a region that could have provided shelter in previous climatic extremes.


Botany ◽  
2012 ◽  
Vol 90 (7) ◽  
pp. 587-597 ◽  
Author(s):  
Felicity E. Bedford ◽  
Robert J. Whittaker ◽  
Jeremy T. Kerr

Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins. Here, we investigate geographical range shifts relative to changing climatic conditions among a particularly well-sampled assemblage of butterflies in Canada. We assembled observations of 81 species and measured their latitudinal displacement between two periods: 1960–1975 (a period of little climate change) and 1990–2005 (a period with large climate change). We find an unexpected trend for species’ northern borders to shift progressively less relative to increasing minimum winter temperatures in northern Canada. This study demonstrates a novel, systemic latitudinal gradient in lags among a large species assemblage in responses to recent climate change. Even among the most mobile species and without anthropogenic barriers to dispersal, these pollinators have been unable to extend their ranges as fast as required to keep pace with climate change.


2020 ◽  
Author(s):  
Luca Santini ◽  
Ana Benítez-López ◽  
Luigi Maiorano ◽  
Mirza Čengić ◽  
Mark A.J. Huijbregts

AbstractAimForecasting changes in species distribution under future scenarios is one of the most prolific areas of application for species distribution models (SDMs). However, no consensus yet exists on the reliability of such models for drawing conclusions on species distribution response to changing climate. In this study we provide an overview of common modelling practices in the field and assess model predictions reliability using a virtual species approach.LocationGlobalMethodsWe first provide an overview of common modelling practices in the field by reviewing the papers published in the last 5 years. Then, we use a virtual species approach and three commonly applied SDM algorithms (GLM, MaxEnt and Random Forest) to assess the estimated (cross-validated) and actual predictive performance of models parameterized with different modelling settings and violations of modelling assumptions.ResultsOur literature review shows that most papers that model species distribution under climate change rely on single models (65%) and small samples (< 50 presence points, 62%), use presence-only data (85%), and binarize models’ output to estimate range shift, contraction or expansion (74%). Our virtual species approach reveals that the estimated predictive performance tends to be over-optimistic compared to the real predictive performance. Further, the binarization of predicted probabilities of presence reduces models’ predictive ability considerably. Sample size is one of the main predictors of real accuracy, but has little influence on estimated accuracy. Finally, the inclusion of irrelevant predictors and the violation of modelling assumptions increases estimated accuracy but decreases real accuracy of model projections, leading to biased estimates of range contraction and expansion.Main conclusionsOur study calls for extreme caution in the application and interpretation of SDMs in the context of biodiversity conservation and climate change research, especially when modelling a large number of species where species-specific model settings become impracticable.


2021 ◽  
Author(s):  
Joséphine Couet ◽  
Emma-Liina Marjakangas ◽  
Andrea Santangeli ◽  
John Atle Kålås ◽  
Åke Lindström ◽  
...  

Abstract Climate change is pushing species ranges towards poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is very limited. From a conservation perspective, studying altitudinal shifts is particularly important as mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts have occurred among birds in the Scandinavian mountains over 13 years and assess whether such shifts are related to species’ traits. Using abundance data, we show a clear pattern of uphill shifts in the mean altitudes of the bird species’ abundances across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 77 species, 54 shifted their ranges uphill. In general, the range shift was faster when the altitudinal range within the area was wider. Importantly, the altitudinal shift was strongly related to species’ longevity: short-lived species showed more pronounced altitudinal uphill shifts than long-lived species. Our results show that the altitudinal range shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. This highlights the wide-ranging impact of climate change and the potential vulnerability of species with slow life-histories, as they appear unable to timely respond to rapidly changing climatic conditions.


Author(s):  
Jian Chen ◽  
Yuan Feng ◽  
Wu Kui ◽  
Dai Dong ◽  
Wang Dong ◽  
...  

The presence of the Chinese caterpillar fungus (CCF) depends on the distribution of its host insects and host plants. However, its distribution pattern in response to climate change and interspecific relationships in geographical distribution is unknown. We used the MaxEnt model to obtain areas suitable for the CCF, considering its host insects and host plants under different historical climate backgrounds. We then superimposed and analyzed them to explore the range shift in response to climate change of Chinese caterpillar fungus based on species redundancy. From the Last Glacial Maximum (LGM) to 2050, the suitable distribution pattern of the CCF is estimated to change from fragmentized to concentrated and connected. The high redundancy area (HRA) continued to increase from the Middle Holocene (MH) to the present and 2050, with an increased area of 31.46×104 km2. The suitable area moved to the northwest and the total movement distance of its average coordinates was about 500 km. The altitude of the suitable area increased continuously from the LGM to the present and to 2050, and the average altitude of HRA increased from 2740.89 m (LGM) to 4246.76 m (2050). The distribution pattern and changes of CCF under different climatic conditions provides a reference for the current and future geographical regional planning for conservation and sustainable utilization. The distribution pattern similarity of the CCF suitable area, suitable area for host insects, and host plants HRA of distribution area, might be the result of their long-term co-evolution. The decreasing trend of CCF yield under human disturbance was not as severe as expected, suggesting that climate change may be beneficial to distribution expansion of the CCF.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Ehsan Rahimi ◽  
Shahindokht Barghjelveh ◽  
Pinliang Dong

Abstract Background Climate change is occurring rapidly around the world, and is predicted to have a large impact on biodiversity. Various studies have shown that climate change can alter the geographical distribution of wild bees. As climate change affects the species distribution and causes range shift, the degree of range shift and the quality of the habitats are becoming more important for securing the species diversity. In addition, those pollinator insects are contributing not only to shaping the natural ecosystem but also to increased crop production. The distributional and habitat quality changes of wild bees are of utmost importance in the climate change era. This study aims to investigate the impact of climate change on distributional and habitat quality changes of five wild bees in northwestern regions of Iran under two representative concentration pathway scenarios (RCP 4.5 and RCP 8.5). We used species distribution models to predict the potential range shift of these species in the year 2070. Result The effects of climate change on different species are different, and the increase in temperature mainly expands the distribution ranges of wild bees, except for one species that is estimated to have a reduced potential range. Therefore, the increase in temperature would force wild bees to shift to higher latitudes. There was also significant uncertainty in the use of different models and the number of environmental layers employed in the modeling of habitat suitability. Conclusion The increase in temperature caused the expansion of species distribution and wider areas would be available to the studied species in the future. However, not all of this possible range may include high-quality habitats, and wild bees may limit their niche to suitable habitats. On the other hand, the movement of species to higher latitudes will cause a mismatch between farms and suitable areas for wild bees, and as a result, farmers will face a shortage of pollination from wild bees. We suggest that farmers in these areas be aware of the effects of climate change on agricultural production and consider the use of managed bees in the future.


Sign in / Sign up

Export Citation Format

Share Document