scholarly journals Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Ehsan Rahimi ◽  
Shahindokht Barghjelveh ◽  
Pinliang Dong

Abstract Background Climate change is occurring rapidly around the world, and is predicted to have a large impact on biodiversity. Various studies have shown that climate change can alter the geographical distribution of wild bees. As climate change affects the species distribution and causes range shift, the degree of range shift and the quality of the habitats are becoming more important for securing the species diversity. In addition, those pollinator insects are contributing not only to shaping the natural ecosystem but also to increased crop production. The distributional and habitat quality changes of wild bees are of utmost importance in the climate change era. This study aims to investigate the impact of climate change on distributional and habitat quality changes of five wild bees in northwestern regions of Iran under two representative concentration pathway scenarios (RCP 4.5 and RCP 8.5). We used species distribution models to predict the potential range shift of these species in the year 2070. Result The effects of climate change on different species are different, and the increase in temperature mainly expands the distribution ranges of wild bees, except for one species that is estimated to have a reduced potential range. Therefore, the increase in temperature would force wild bees to shift to higher latitudes. There was also significant uncertainty in the use of different models and the number of environmental layers employed in the modeling of habitat suitability. Conclusion The increase in temperature caused the expansion of species distribution and wider areas would be available to the studied species in the future. However, not all of this possible range may include high-quality habitats, and wild bees may limit their niche to suitable habitats. On the other hand, the movement of species to higher latitudes will cause a mismatch between farms and suitable areas for wild bees, and as a result, farmers will face a shortage of pollination from wild bees. We suggest that farmers in these areas be aware of the effects of climate change on agricultural production and consider the use of managed bees in the future.

2013 ◽  
Vol 19 (2) ◽  
pp. 156 ◽  
Author(s):  
Corey Rovzar ◽  
Thomas W Gillespie ◽  
Kapua Kawelo ◽  
Maggie McCain ◽  
Erin C Riordan ◽  
...  

In the Hawaiian dry forest, 45% of all tropical dry forest trees and shrubs are on the federal threatened and endangered species list. Research is needed to understand the current range of these endangered species, the factors that affect their current and future distributions, and ultimately, identify areas where the most successful restoration can be undertaken. This research uses species distribution modelling to predict the potential range of Hibiscus brackenridgei, the state flower of Hawaii and a federally endangered species found on Oahu. We used presence data and the modelling algorithm Maxent to model the current potential distribution of H. brackenridgei, identify climate and environmental variables that influence the species’ distribution, and model the species’ predicted future distribution based on a range of projected climate change scenarios. Statistical analysis suggests that the Maxent models accurately predict the species’ distribution, and therefore, may be useful for conservation management. Comparing the current model with the future models of changes for 2060-2089, changes in the potential niche of H. brackenridgei only range by -4% to 14%. This suggests that the predicted changes in climate, under both low (B2a) and high (A2a) SRES (Special Report on Emissions Scenarios) global emissions scenarios, may not significantly impact the future distribution of H. brackenridgei on Oahu. We identified a total of 115 km2 of very highly (≥ 0.70) and highly (≥ 0.50) suitable habitat which represents potential areas where restoration projects could be implemented. This research suggests that threats like habitat loss, fire, invasive species, and grazing may be more important than climate for the future conservation of Hawaiian dry forest species.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lina Caballero-Villalobos ◽  
Francisco Fajardo-Gutiérrez ◽  
Mariasole Calbi ◽  
Gustavo A. Silva-Arias

It is predicted that climate change will strongly affect plant distributions in high elevation “sky islands” of tropical Andes. Polylepis forests are a dominant element of the treeline throughout the Andes Cordillera in South America. However, little is known about the climatic factors underlying the current distribution of Polylepis trees and the possible effect of global climate change. The species Polylepis quadrijuga is endemic to the Colombian Eastern Cordillera, where it plays a fundamental ecological role in high-altitude páramo-forest ecotones. We sought to evaluate the potential distribution of P. quadrijuga under future climate change scenarios using ensemble modeling approaches. We conducted a comprehensive assessment of future climatic projections deriving from 12 different general circulation models (GCMs), four Representative Concentration Pathways (R) emissions scenarios, and two different time frames (2041–2060 and 2061–2080). Additionally, based on the future projections, we evaluate the effectiveness of the National System of Protected Natural Areas of Colombia (SINAP) and Páramo Complexes of Colombia (PCC) in protecting P. quadrijuga woodlands. Here, we compiled a comprehensive set of observations of P. quadrijuga and study them in connection with climatic and topographic variables to identify environmental predictors of the species distribution, possible habitat differentiation throughout the geographic distribution of the species, and predict the effect of different climate change scenarios on the future distribution of P. quadrijuga. Our results predict a dramatic loss of suitable habitat due to climate change on this key tropical Andean treeline species. The ensemble Habitat Suitability Modeling (HSM) shows differences in suitable scores among north and south regions of the species distribution consistent with differences in topographic features throughout the available habitat of P. quadrijuga. Future projections of the HSM predicted the Páramo complex “Sumapaz-Cruz Verde” as a major area for the long-term conservation of P. quadrijuga because it provides a wide range of suitable habitats for the different evaluated climate change scenarios. We provide the first set of priority areas to perform both in situ and ex situ conservation efforts based on suitable habitat projections.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 752
Author(s):  
Yichen Zhou ◽  
Zengxin Zhang ◽  
Bin Zhu ◽  
Xuefei Cheng ◽  
Liu Yang ◽  
...  

Cunninghamia lanceolata (Lamb.) Hook. (Chinese fir) is one of the main timber species in Southern China, which has a wide planting range that accounts for 25% of the overall afforested area. Moreover, it plays a critical role in soil and water conservation; however, its suitability is subject to climate change. For this study, the appropriate distribution area of C. lanceolata was analyzed using the MaxEnt model based on CMIP6 data, spanning 2041–2060. The results revealed that (1) the minimum temperature of the coldest month (bio6), and the mean diurnal range (bio2) were the most important environmental variables that affected the distribution of C. lanceolata; (2) the currently suitable areas of C. lanceolata were primarily distributed along the southern coastal areas of China, of which 55% were moderately so, while only 18% were highly suitable; (3) the projected suitable area of C. lanceolata would likely expand based on the BCC-CSM2-MR, CanESM5, and MRI-ESM2-0 under different SSPs spanning 2041–2060. The increased area estimated for the future ranged from 0.18 to 0.29 million km2, where the total suitable area of C. lanceolata attained a maximum value of 2.50 million km2 under the SSP3-7.0 scenario, with a lowest value of 2.39 million km2 under the SSP5-8.5 scenario; (4) in combination with land use and farmland protection policies of China, it is estimated that more than 60% of suitable land area could be utilized for C. lanceolata planting from 2041–2060 under different SSP scenarios. Although climate change is having an increasing influence on species distribution, the deleterious impacts of anthropogenic activities cannot be ignored. In the future, further attention should be paid to the investigation of species distribution under the combined impacts of climate change and human activities.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172107 ◽  
Author(s):  
Juan M. Requena-Mullor ◽  
Enrique López ◽  
Antonio J. Castro ◽  
Domingo Alcaraz-Segura ◽  
Hermelindo Castro ◽  
...  

2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2021 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Dimitra Founda ◽  
Christos Giannakopoulos

<p>Historical changes, spanning 1971–2016, in the Athens Urban Heat Island (UHI) over summer were assessed by contrasting two air temperature records from established meteorological stations in urban and rural settings. When contrasting two 20-year historical periods (1976–1995 and 1996–2015), there is a significant difference in summer UHI regimes. The stronger UHI-intensity of the second period (1996–2015) is likely linked to increased pollution and heat input. Observations suggest that the Athens summer UHI characteristics even fluctuate on multi-annual basis. Specifically, the reduction in air pollution during the Greek Economic Recession (2008-2016) probable subtly changed the UHI regime, through lowering the frequencies of extremely hot days (T<sub>max</sub> > 37 °C) and nights (T<sub>min</sub> > 26 °C).</p><p>Subsequently, we examined the future temporal trends of two different UHIs in Athens (Greece) under three climate change scenarios. A five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) simulated air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5 and RCP8.5) were implanted in the simulations after 2005. The observed daily maximum and minimum air temperature data (T<sub>max</sub> and T<sub>min</sub>) from two historical UHI regimes (1976–1995 and 1996–2015, respectively) were used, separately, to bias-adjust the model simulations thus creating two sets of results.</p><p>This novel approach allowed us to assess future temperature developments in Athens under two different UHI intensity regimes. We found that the future frequency of days with T<sub>max</sub> > 37 °C in Athens was only different from rural background values under the intense UHI regime. There is a large increase in the future frequency of nights with T<sub>min</sub> > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site.</p><p>This study shows a large urban amplification of the frequency of extremely hot days and nights which is likely forced by increasing air pollution and heat input. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be also effective in reducing urban temperatures during extreme heat events in Athens under all future climate change scenarios. Such policies therefore have multiple benefits, including: reducing electricity (energy) needs, improving living quality and decreasing heat- and pollution related illnesses/deaths.</p><p> </p>


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 831
Author(s):  
Roberta Marques ◽  
Juliano Lessa Pinto Duarte ◽  
Adriane da Fonseca Duarte ◽  
Rodrigo Ferreira Krüger ◽  
Uemmerson Silva da Cunha ◽  
...  

Lycoriella species (Sciaridae) are responsible for significant economic losses in greenhouse production (e.g., mushrooms, strawberries, and nurseries). The current distributions of species in the genus are restricted to cold-climate countries. Three species of Lycoriella are of particular economic concern in view of their ability to invade areas in countries across the Northern Hemisphere. We used ecological niche models to determine the potential for range expansion under future climate change scenarios (RCP 4.5 and RCP 8.5) in the distribution of these three species of Lycoriella. Stable environmental suitability under climate change was a dominant theme in these species; however, potential range increases were noted in key countries (e.g., USA, Brazil, and China). Our results illustrate the potential for range expansion in these species in the Southern Hemisphere, including some of the highest greenhouse production areas in the world.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Capainolo ◽  
Utku Perktaş ◽  
Mark D. E. Fellowes

Abstract Background Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns. While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species. The Common Grackle (Quiscalus quiscula; Linnaeus 1758), though declining in portions of its range, is a widespread blackbird (Icteridae) species in North America east of the Rocky Mountains. This study examined how climate change might affect the future range distribution of Common Grackles. Methods We used the R package Wallace and six general climate models (ACCESS1-0, BCC-CSM1-1, CESM1-CAM5-1-FV2, CNRM-CM5, MIROC-ESM, and MPI-ESM-LR) available for the future (2070) to identify climatically suitable areas, with an ecological niche modelling approach that includes the use of environmental conditions. Results Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska, even under more optimistic climate change scenarios. Additionally, there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America. The most important bioclimatic variables for model predictions were Annual Mean Temperature, Temperature Seasonality, Mean Temperature of Wettest Quarter and Annual Precipitation. Conclusions The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years. This research is important in helping us understand how climate change will affect future range patterns of widespread, common bird species.


Sign in / Sign up

Export Citation Format

Share Document