scholarly journals Short-Lived Species Move Uphill Faster Under Climate Change

Author(s):  
Joséphine Couet ◽  
Emma-Liina Marjakangas ◽  
Andrea Santangeli ◽  
John Atle Kålås ◽  
Åke Lindström ◽  
...  

Abstract Climate change is pushing species ranges towards poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is very limited. From a conservation perspective, studying altitudinal shifts is particularly important as mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts have occurred among birds in the Scandinavian mountains over 13 years and assess whether such shifts are related to species’ traits. Using abundance data, we show a clear pattern of uphill shifts in the mean altitudes of the bird species’ abundances across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 77 species, 54 shifted their ranges uphill. In general, the range shift was faster when the altitudinal range within the area was wider. Importantly, the altitudinal shift was strongly related to species’ longevity: short-lived species showed more pronounced altitudinal uphill shifts than long-lived species. Our results show that the altitudinal range shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. This highlights the wide-ranging impact of climate change and the potential vulnerability of species with slow life-histories, as they appear unable to timely respond to rapidly changing climatic conditions.

Oecologia ◽  
2022 ◽  
Author(s):  
Joséphine Couet ◽  
Emma-Liina Marjakangas ◽  
Andrea Santangeli ◽  
John Atle Kålås ◽  
Åke Lindström ◽  
...  

AbstractClimate change is pushing species ranges and abundances towards the poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is scarce. From a conservation perspective, studying altitudinal shifts in wildlife is relevant because mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts in birds’ abundances have occurred in the Scandinavian mountains over 13 years, and assess whether such shifts are related to species’ traits. Using abundance data, we show a clear pattern of uphill shift in the mean altitude of bird abundance across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 76 species, 7 shifted significantly their abundance uphill. Altitudinal shift was strongly related to species’ longevity: short-lived species showed more pronounced uphill shifts in abundance than long-lived species. The observed abundance shifts suggest that uphill shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. Overall, the results underscore the wide-ranging impact of climate change and the potential vulnerability of species with slow life histories, as they appear less able to timely respond to rapidly changing climatic conditions.


Botany ◽  
2012 ◽  
Vol 90 (7) ◽  
pp. 587-597 ◽  
Author(s):  
Felicity E. Bedford ◽  
Robert J. Whittaker ◽  
Jeremy T. Kerr

Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins. Here, we investigate geographical range shifts relative to changing climatic conditions among a particularly well-sampled assemblage of butterflies in Canada. We assembled observations of 81 species and measured their latitudinal displacement between two periods: 1960–1975 (a period of little climate change) and 1990–2005 (a period with large climate change). We find an unexpected trend for species’ northern borders to shift progressively less relative to increasing minimum winter temperatures in northern Canada. This study demonstrates a novel, systemic latitudinal gradient in lags among a large species assemblage in responses to recent climate change. Even among the most mobile species and without anthropogenic barriers to dispersal, these pollinators have been unable to extend their ranges as fast as required to keep pace with climate change.


2018 ◽  
Author(s):  
Sara Tomiolo ◽  
Mark C. Bilton ◽  
Katja Tielbörger

Summary(1) Climate change will decrease precipitation and increase rainfall variability in Eastern Mediterranean regions, with responses of plant communities largely uncertain. Here, we tested short-term responses of dryland plant communities to contrasting rainfall regimes using a novel experimental approach.(2) We exposed three annual plant communities to sharp changes in climatic conditions using whole community reciprocal transplants of soil and seed banks. We tested for the role of climate vs. community origin on community response and resistance. In parallel, we asked whether origin-specific climatic adaptations predict compositional shifts across climates.(3) For both community origins, the most dry-adapted species in each community increased in dry climate and the wet-adapted species increased in wet climate. Dry community origins showed large compositional shifts while maintaining stable plant density, biomass and species richness across climates. Conversely, wet communities showed smaller compositional shifts, but larger variation in biomass and richness.(4) Asynchrony in species abundances in response to rainfall variability could maintain structural community stability. This, in combination with seed dormancy, has the ability to delay extinction in response to climate change. However, increasing occurrence of extreme droughts may, in the long-term, lead to loss of wet-adapted species.


Author(s):  
Jian Chen ◽  
Yuan Feng ◽  
Wu Kui ◽  
Dai Dong ◽  
Wang Dong ◽  
...  

The presence of the Chinese caterpillar fungus (CCF) depends on the distribution of its host insects and host plants. However, its distribution pattern in response to climate change and interspecific relationships in geographical distribution is unknown. We used the MaxEnt model to obtain areas suitable for the CCF, considering its host insects and host plants under different historical climate backgrounds. We then superimposed and analyzed them to explore the range shift in response to climate change of Chinese caterpillar fungus based on species redundancy. From the Last Glacial Maximum (LGM) to 2050, the suitable distribution pattern of the CCF is estimated to change from fragmentized to concentrated and connected. The high redundancy area (HRA) continued to increase from the Middle Holocene (MH) to the present and 2050, with an increased area of 31.46×104 km2. The suitable area moved to the northwest and the total movement distance of its average coordinates was about 500 km. The altitude of the suitable area increased continuously from the LGM to the present and to 2050, and the average altitude of HRA increased from 2740.89 m (LGM) to 4246.76 m (2050). The distribution pattern and changes of CCF under different climatic conditions provides a reference for the current and future geographical regional planning for conservation and sustainable utilization. The distribution pattern similarity of the CCF suitable area, suitable area for host insects, and host plants HRA of distribution area, might be the result of their long-term co-evolution. The decreasing trend of CCF yield under human disturbance was not as severe as expected, suggesting that climate change may be beneficial to distribution expansion of the CCF.


2009 ◽  
Vol 55 (2) ◽  
pp. 92-101 ◽  
Author(s):  
A. P. Møller ◽  
E. Flensted-Jensen ◽  
W. Mardal

Abstract Climate change has advanced the phenology of many organisms. Migratory animals face particular problems because climate change in the breeding and the wintering range may be asynchronous, preventing rapid response to changing conditions. Advancement in timing of spring migration may have carry-over effects to other parts of the annual cycle, simply because advancement of one event in the annual cycle also advances subsequent events, gradually causing a general shift in the timing of the entire annual cycle. Such a phenotypic shift could generate accumulating effects over the years for individuals, but also across generations. Here we test this novel hypothesis of phenotypic response to climate change by using long-term data on the Arctic tern Sterna paradisaea. Mean breeding date advanced by almost three weeks during the last 70 years. Annual arrival date at the breeding grounds during a period of 47 years was predicted by environmental conditions in the winter quarters in the Southern Ocean near the Antarctic and by mean breeding date the previous year. Annual mean breeding date was only margiually determined by timing of arrival the current year, but to a larger extent by arrival date and breeding date the previous year. Learning affected arrival date as shown by a positive correlation between arrival date in year (i + 1) relative to breeding date in year (i) and the selective advantage of early breeding in year (i). This provides a mechanism for changes in arrival date being adjusted to changing environmental conditions. This study suggests that adaptation to changing climatic conditions can be achieved through learning from year to year.


2021 ◽  
Vol 9 ◽  
Author(s):  
Montague H. C. Neate-Clegg ◽  
Samuel E. I. Jones ◽  
Joseph A. Tobias ◽  
William D. Newmark ◽  
Çaǧan H. Şekercioǧlu

Globally, birds have been shown to respond to climate change by shifting their elevational distributions. This phenomenon is especially prevalent in the tropics, where elevational gradients are often hotspots of diversity and endemism. Empirical evidence has suggested that elevational range shifts are far from uniform across species, varying greatly in the direction (upslope vs. downslope) and rate of change (speed of elevational shift). However, little is known about the drivers of these variable responses to climate change, limiting our ability to accurately project changes in the future. Here, we compile empirical estimates of elevational shift rates (m/yr) for 421 bird species from eight study sites across the tropics. On average, species shifted their mean elevations upslope by 1.63 ± 0.30 m/yr, their upper limits by 1.62 m ± 0.38 m/yr, and their lower limits by 2.81 ± 0.42 m/yr. Upslope shift rates increased in smaller-bodied, less territorial species, whereas larger species were more likely to shift downslope. When considering absolute shift rates, rates were fastest for species with high dispersal ability, low foraging strata, and wide elevational ranges. Our results indicate that elevational shift rates are associated with species’ traits, particularly body size, dispersal ability, and territoriality. However, these effects vary substantially across sites, suggesting that responses of tropical montane bird communities to climate change are complex and best predicted within the local or regional context.


2020 ◽  
Author(s):  
Julius Maina Waititu ◽  
Charles Ndegwa Mundia ◽  
Arthur W Sichangi

AbstractChanges in climatic conditions increases the risks of native and alien taxa expanding in geographical range and causing habitat transformations. The role of climate change in enhancing bio-invasions in local natural environments need to be assessed to guide on effective species management policy formulations. In this present study, we used species presence records, predictor variables and an ensemble of General Circulation Models data to predict suitable ecological niches for five of the selected invasive plant species within Nyeri County, Kenya. We predicted species distributions under RCP2.6, RCP4.5, and RCP8.5 emission scenarios for the years 2050 and 2070. We analysed species distribution changes to identify invasive species requiring immediate management action. Our analysis indicated that three of the five study species were suitable in ~50% of the study area while the other two were suitable in ~30% under the current climate. Lantana camara L. and Solanum campylacanthum Hochst. ex A. Rich species would experience the largest range shift distance of ~6 – 10km and the largest habitat gain of ~12 – 33% in the future. Caesalpinia decapetala (Roth) Alston, Opuntia stricta (Haw.) Haw. and Senna didymobotrya (Fresen.) H.S. Irwin & Barneby species on the other hand would have a decline in habitat range under future climate change scenarios. Although, S. didymobotrya is considered a native species, it would lose half of its current suitable habitat in the future. Range shift analysis showed all study species would generally shift to the north west direction or towards the Aberdare ranges. From this study we conclude that invasive species management programs for smaller geographical areas ought to consider projecting species distributions under climate change scenarios to identify areas with high possible biodiversity changes. This would be important to conservationists when prioritizing management actions of invasive species in the region where data on invasive species is still limited.


AoB Plants ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Emily V Moran

Abstract Many studies have examined the impact of dispersal on local adaptation, but much less attention has been paid to how local adaptation influences range shifts. The aim of this study was to test how local adaptation might affect climate-driven range shifts in plants, and if this might differ between plants with different life histories. Simulated range shift dynamics were compared for hypothetical annual, perennial and tree species, each comprised of either one plastic genotype or six locally adapted genotypes. The landscape consists of shifting climate bands made up of 20 × 20 m patches containing multiple individuals. Effects of seed dispersal, breadth of the plastic species’ tolerance, steepness of the climate gradient and rate of the climate shift are also examined. Local adaptation increased the equilibrium range size and aided range shifts by boosting fitness near range edges. However, when the rate of climate change was doubled on a steep gradient, locally adapted trees exhibited a higher percent loss of range during the climate shift. The plastic annual species with short dispersal was unable to recover its range size even after the climate stabilized, while the locally adapted annuals tracked climate change well. The results suggest that in most situations local adaptation and longer dispersal distances will be advantageous, though not necessarily sufficient, for tracking suitable climates. However, local adaptation might put species with long generation times at greater risk when climate shifts are very rapid. If confirmed by empirical tests, these results suggest that identifying variation between species in how fitness varies along climate gradients and in these key demographic rates might aid in prioritizing management actions.


2012 ◽  
Vol 18 (8) ◽  
pp. 2419-2428 ◽  
Author(s):  
Marleen M. P. Cobben ◽  
Jana Verboom ◽  
Paul F. M. Opdam ◽  
Rolf F. Hoekstra ◽  
René Jochem ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 620 ◽  
Author(s):  
Georgia Fassou ◽  
Konstantinos Kougioumoutzis ◽  
Gregoris Iatrou ◽  
Panayiotis Trigas ◽  
Vasileios Papasotiropoulos

Research Highlights: The effects of climate change on habitat loss, range shift and/or genetic impoverishment of mid-elevation plants has received less attention compared to alpine species. Moreover, genetic diversity patterns of mountain forest herbaceous species have scarcely been explored in the Balkans. In this context, our study is the first that aims to examine Helleborus odorus subsp. cyclophyllus, a medicinal plant endemic to the southern part of the Balkan Peninsula. Background and Objectives: We compare its genetic diversity and structure along the continuous mountain range of western Greece with the topographically less structured mountains of eastern Greece, and predict its present and future habitat suitability, using several environmental variables. Materials and Methods: Inter Simple Sequence Repeat (ISSR) markers were used to genotype 80 individuals from 8 populations, covering almost the species’ entire distribution range in Greece. We investigated the factors shaping its genetic composition and driving its current and future distribution. Results: High gene diversity (0.2239–0.3319), moderate population differentiation (0.0317–0.3316) and increased gene flow (Nm = 1.3098) was detected. According to any GCM/RCP/climate database combination, Helleborus odorus subsp. cyclophyllus is projected to lose a significant portion of its current distribution by 2070 and follow a trend towards genetic homogenization. Conclusions: Populations exhibit in terms of genetic structure a west–east genetic split, which becomes more evident southwards. This is mainly due to geographic/topographic factors and their interplay with Quaternary climatic oscillations, and to environmental constraints, which may have a negative impact on the species’ future distribution and genetic composition. Pindos mountain range seems to buffer climate change effects and will probably continue to host several populations. On the other hand, peripheral populations have lower genetic diversity compared to central populations, but still hold significant evolutionary potential due to the private alleles they maintain.


Sign in / Sign up

Export Citation Format

Share Document