scholarly journals Role of interferon-γand inflammatory monocytes in driving colonic inflammation during acuteClostridium difficileinfection in mice

Immunology ◽  
2017 ◽  
Vol 150 (4) ◽  
pp. 468-477 ◽  
Author(s):  
Andrew J. McDermott ◽  
Nicole R. Falkowski ◽  
Roderick A. McDonald ◽  
Charles R. Frank ◽  
Chinmay R. Pandit ◽  
...  
Gut ◽  
2020 ◽  
pp. gutjnl-2020-321731
Author(s):  
Dominik Aschenbrenner ◽  
Maria Quaranta ◽  
Soumya Banerjee ◽  
Nicholas Ilott ◽  
Joanneke Jansen ◽  
...  

ObjectiveDysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine.DesignWe performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples.ResultsWe characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1β and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease.ConclusionOur work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn’s disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1β-targeting therapies upstream of IL-23.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiakang Jin ◽  
Jinti Lin ◽  
Ankai Xu ◽  
Jianan Lou ◽  
Chao Qian ◽  
...  

Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Lisa E. Gralinski ◽  
Timothy P. Sheahan ◽  
Thomas E. Morrison ◽  
Vineet D. Menachery ◽  
Kara Jensen ◽  
...  

ABSTRACT Acute respiratory distress syndrome (ARDS) is immune-driven pathologies that are observed in severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. SARS-CoV emerged in 2002 to 2003 and led to a global outbreak of SARS. As with the outcome of human infection, intranasal infection of C57BL/6J mice with mouse-adapted SARS-CoV results in high-titer virus replication within the lung, induction of inflammatory cytokines and chemokines, and immune cell infiltration within the lung. Using this model, we investigated the role of the complement system during SARS-CoV infection. We observed activation of the complement cascade in the lung as early as day 1 following SARS-CoV infection. To test whether this activation contributed to protective or pathologic outcomes, we utilized mice deficient in C3 (C3–/–), the central component of the complement system. Relative to C57BL/6J control mice, SARS-CoV-infected C3–/– mice exhibited significantly less weight loss and less respiratory dysfunction despite equivalent viral loads in the lung. Significantly fewer neutrophils and inflammatory monocytes were present in the lungs of C3–/– mice than in C56BL/6J controls, and subsequent studies revealed reduced lung pathology and lower cytokine and chemokine levels in both the lungs and the sera of C3–/– mice than in controls. These studies identify the complement system as an important host mediator of SARS-CoV-induced disease and suggest that complement activation regulates a systemic proinflammatory response to SARS-CoV infection. Furthermore, these data suggest that SARS-CoV-mediated disease is largely immune driven and that inhibiting complement signaling after SARS-CoV infection might function as an effective immune therapeutic. IMPORTANCE The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection.


2014 ◽  
Vol 307 (3) ◽  
pp. G338-G346 ◽  
Author(s):  
Courtney C. Kurtz ◽  
Ioannis Drygiannakis ◽  
Makoto Naganuma ◽  
Sanford Feldman ◽  
Vasileios Bekiaris ◽  
...  

Adenosine is a purine metabolite that can mediate anti-inflammatory responses in the digestive tract through the A2A adenosine receptor (A2AAR). We examined the role of this receptor in the control of inflammation in the adoptive transfer model of colitis. Infection of A2AAR−/− mice with Helicobacter hepaticus increased colonic inflammation scores compared with uninfected A2AAR controls. Comparison of T cell subsets in wild-type and A2AAR−/− mice revealed differences in markers associated with activated helper T (Th) cells and regulatory T (Treg) cells. Previous studies showed that expression of A2AAR on CD45RBHI and CD45RBLO Th cells is essential for the proper regulation of colonic inflammation. Adoptive transfer of CD45RBHI with CD45RBLO from wild-type mice into RAG1−/−/A2AAR−/− mice induced severe disease within 3 wk, although transfer of the same subsets into RAG1−/− mice does not induce colitis. This suggests that the presence of A2AAR on recipient cells is also important for controlling colitis. To investigate the role of A2AAR in myeloid cells, chimeric recipients were generated by injection of bone marrow from RAG1−/− or RAG1−/−/A2AAR−/− mice into irradiated RAG1−/− mice. After adoptive transfer, these recipients did not develop colitis, regardless of A2AAR expression by the donor. Together, our results suggest that the control of inflammation in vivo is dependent on A2AAR signaling through multiple cell types that collaborate in the regulation of colitis by responding to extracellular adenosine.


2015 ◽  
Vol 50 (8) ◽  
pp. 862-875 ◽  
Author(s):  
Ryusaku Kusunoki ◽  
Shunji Ishihara ◽  
Yasumasa Tada ◽  
Akihiko Oka ◽  
Hiroki Sonoyama ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 580-580
Author(s):  
Irina Portier ◽  
Frederik Denorme ◽  
Kimberly A Queisser ◽  
Yasuhiro Kosaka ◽  
Aaron C Petrey ◽  
...  

Abstract Background: Cerebral malaria is a highly prevalent infectious disease in Sub-Saharan Africa caused by the Plasmodium parasite. The pathogenesis of cerebral malaria results from damaged vascular endothelium induced by parasite sequestration, inflammatory cytokine production and vascular leakage, which results in increased brain permeability and death. While maladaptive responses from immune cells are thought to contribute, growing evidence suggests a crucial role of platelets in malaria pathophysiology. The mammalian target of rapamycin (mTOR) pathway is critical in regulating outcomes in malaria. Previous studies have demonstrated an mTOR specific inhibitor, rapamycin, is protective in a mouse model of experimental cerebral malaria (ECM). However, if the mTOR pathway in platelets specifically contributes to the pathogenesis of malaria is unknown. Methods: Platelet-specific mTOR-deficient (mTOR plt-/-) mice and littermate controls were subjected to a well-established model of ECM, using Plasmodium berghei ANKA. In addition, platelets isolated from human malaria patients were examined for differential regulation of the mTOR pathway using RNA-seq. Results: Platelet RNA-seq and Ingenuity Pathway Analysis from patients infected with P. vivax demonstrated enrichment of mTOR-associated pathways in platelets, such as mTOR signaling and p70S6K signaling, indicating mTOR associated genes are upregulated in human platelets during malaria infection. In mice infected with P. berghei ANKA, the mTOR pathway was activated in bone marrow-megakaryocytes and platelets based on phosphorylation of mTOR and its downstream effector, 4E-BP1. As the mTOR pathway regulates protein translation in platelets, we examined de novo protein synthesis and observed increased protein translation in platelets isolated from mice infected with P. berghei ANKA compared to uninfected controls. To study the specific role of platelet mTOR during ECM pathogenesis, mTOR plt-/- mice and wild-type controls (mTOR plt+/+), were infected with P. berghei ANKA. Platelet deficient-mTOR mice had significantly (p=0.0336) prolonged survival compared to wild-type mice. Increased survival was independent of parasitemia, suggesting platelets did not alter parasite reproduction. While thrombocytopenia and anemia were similar in both genotypes, mTOR plt-/- mice had significantly reduced brain (p=0.0067) and lung (p<0.0001) vascular permeability during late-stage ECM. Interestingly, flow cytometric assessment of leukocyte recruitment to the brain demonstrated a 1.7-fold (p=0.0442) reduction in inflammatory monocytes in platelet-deficient mTOR mice. However, mTOR plt-/- mice had significantly (1.4-fold, p=0.007) more inflammatory monocytes in the blood. Interestingly, circulating platelet-monocytes aggregates were significantly less in mTOR plt-/- compared to mTOR plt+/+ (p=0.0433). Taken together, these results suggest that platelets assist in the recruitment of leukocytes to the brain vasculature during ECM, which is impaired when mTOR is ablated. Conclusions: Our data demonstrates that the mTOR pathway in platelets plays a significant role in malaria pathogenesis. Deletion of platelet mTOR reduces vascular permeability and prolongs survival during ECM. We hypothesize that altered platelet-inflammatory monocyte interactions drive this phenotype. Disclosures Rondina: Platelet Transcriptomics: Patents & Royalties; Acticor Biotech: Membership on an entity's Board of Directors or advisory committees; Platelet Biogenesis: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document