Some New Zealand indigenous-induced weeds and indigenous-induced modified and mixed plant-communities

1932 ◽  
Vol 49 (326) ◽  
pp. 13-45 ◽  
Author(s):  
L. Cockayne ◽  
G. Simpson ◽  
J. Scott Thomson

SUMMARY The paper deals, though far from fully, with the effect of settlement in New Zealand in regard to the primitive vegetation, and it may also be considered a supplement to Part III. of ‘The Vegetation of New Zealand’, ed. 2. Taken, as a whole, the paper is an explicit denial of the mischievous biological belief, even yet common, that in the ‘struggle between the indigenous and exotic elements of the present flora the latter element is all-powerful.’ According to the most recent estimate, the flora of New Zealand consists of 1850 species, 427 groups of species-hybrids, a great many varietal hybrids, and 650 exotic species. In respect to the vegetation, the following terms used in the paper are defined:–primitive, modified, induced, and the last embraces indigenous-induced, exotic-induced, mixed, and artificial. Competition between the indigenous and the exotic elements is far less severe than is usually considered, each element consisting mainly of different classes of life-forms, and each element for its greater part restricted to a different group of edaphic habitats, the indigenous to those of undisturbed soil, and the exotics to those of greatly disturbed soil. Altitude also plays an important role, the exotics being essentially species of the lowland belt and decreasing both in numbers and power of attack with increase of altitude. The struggle between indigene and exotic is very rarely an equal one, for the latter is generally greatly aided by the introduced grazing and browsing animals, nor must it be forgotten that such were wanting in primitive New Zealand. The exotics have entered into no part of the primitive vegetation—rock and aquatic communities excepted. Where the balance of nature in the primitive vegetation has been upset by the direct or indirect actions of man, a number of indigenous species have broken their bounds and become weeds equal in that undesirable status to any that have been introduced, Pteridium esculentum and Leptospermum Scoparium being indeed worse. This matter of observing indigenes becoming weeds is of particular scientific interest, for the origin of the weed-host of Europe must surely be wrapped in obscurity. Amongst forest-weeds an outstanding class is those which cut off a large part of light from the ground and inhibit, or make difficult, the establishment of seedlings which can develop into trees. Tree-ferns and semi-tree-ferns belong to the above class, and it is shown how certain of these increase greatly by vegetative means, a fact hitherto unpublished. In addition to indigenous-induced weeds there are many indigenous-induced communities, a number of which were unknown in primitive New Zealand, and a selection of such cases forms an important part of the paper. Particularly interesting is the example where a forest, not greatly different from that of the neighbourhood, is being established on heaps of gravel, stones, and silt (gold-mining tailings) in competition with exotics. A few cases are discussed of indigenous species entering into and eradicating powerful exotic-induced communities, e.g. that dominated by gorse and broom being invaded by rain-forest species, including tree-ferns. Another unexpected example—but now quite commonplace—is artificial pasture of European grasses and clovers being transformed into one dominated by an indigenous grass (Danthonia pilosa), such a community being unknown in primitive New Zealand where D. pilosa must have been not particularly common. Still another example is the invasion of an induced-mixed, heavily-grazed pasture by Aciphylla Colensoi, once a highly-important member of montane low tussock-grassland, but now greatly reduced in numbers by fire.

1990 ◽  
Vol 34 (1) ◽  
pp. 86-100 ◽  
Author(s):  
M. Royd Bussell

AbstractCover beds on uplifted Quaternary marine terraces in the Taranaki-Wanganui area of New Zealand include organic deposits which yield abundant pollen. In the west at Ohawe, marine shore platform deposits are overlain by laterally extensive lignites and laharic breccia, interbedded with alluvium and capped by tephra-rich loess. Following a time of presumably interglacial marine deposition on the platform, a long period of glacial climate is suggested by pollen floras dominated by grass and shrubland taxa. Trees were sparse, but the abundance of podocarps, Nothofagus, and tree ferns increased during at least one interval, suggesting minor climatic amelioration. Near the top of the section, a major change in regional vegetation is recorded by a dominance of pollen derived from podocarp-hardwood forest taxa, including Ascarina, interpreted as indicating a fully interglacial climate. The marine platform, previously assigned to oxygen isotope substage 5e, is now placed in stage 7. The overlying deposits were deposited during glacial stage 6, while interglacial substage 5e is recorded by sediment and pollen assemblages near the top of the section.


2006 ◽  
Vol 33 (7) ◽  
pp. 613 ◽  
Author(s):  
Francis M. Kelliher ◽  
Harry Clark ◽  
Zheng Li ◽  
Paul C. D. Newton ◽  
Anthony J. Parsons ◽  
...  

Keppler et al. (2006, Nature 439, 187–191) showed that plants produce methane (CH4) in aerobic environments, leading Lowe (2006, Nature 439, 148–149) to postulate that in countries such as New Zealand, where grazed pastures have replaced forests, the forests could have produced as much CH4 as the ruminants currently grazing these areas. Estimating CH4 emissions from up to 85 million ruminants in New Zealand is challenging and, for completeness, the capacity of forest and pastoral soils to oxidise CH4 should be included. On average, the CH4 emission rate of grazing ruminants is estimated to be 9.6 ± 2.6 g m–2 year–1 (±standard deviation), six times the corresponding estimate for an indigenous forest canopy (1.6 ± 1.1 g m–2 year–1). The forest’s soil is estimated to oxidise 0.9 ± 0.2 g m–2 year–1 more CH4 than representative soils beneath grazed pasture. Taking into account plant and animal sources and the soil’s oxidative capacity, the net CH4 emission rates of forest and grazed ecosystems are 0.6 ± 1.1 and 9.8 ± 2.6 g m–2 year–1, respectively.


2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


2010 ◽  
Vol 14 ◽  
pp. 5-11
Author(s):  
W.M. Williams

The New Zealand flora is a mixture of indigenous and introduced species. The indigenous species have a high intrinsic value while the introduced species include all of the crop and pasture plants upon which the export-led economy depends. New Zealand must maintain both of these important sources of biodiversity in balance. Seed banks are useful tools for biodiversity management. In New Zealand, a seed bank for indigenous species has been a very recent initiative. By contrast, seed banks for introduced species have been established for over 70 years. The reasons for this discrepancy are discussed. For the economic species, conserved genetic diversity is used to enhance productivity and the environment. Large advances can be gained from species that are not used as economic plants. The gene-pool of white clover has been expanded by the use of minor species conserved as seeds in the Margot Forde Germplasm Centre. Keywords: Seed banks, biodiversity conservation, New Zealand flora


2017 ◽  
pp. 89
Author(s):  
Marco Antonio Romero-Romero ◽  
Silvia Castillo ◽  
Jorge Meave ◽  
Hans Van der Wal

A floristic analysis war conducted of the secondary vegetation derived from slash and burn agriculture in a montane rain forest region at Santa Cruz Tepetotutla, located in the Northern Oaxaca Range, Mexico. The analysis of the studied chronosequence is based on a collection of 2 668 specimens encountered in 60 parallel 0.01 ha belt transects (25 X 4 m), distributed in 18 second-growth stands with ages ranging between 5 and ca. 100 years. A total of 499 species were distinguished, which are distributed in 223 genera and 104 families (including 38 secondary vegetation species collected outside of the transects), among which the following growth forms are represented: trees, shrubs, herbs, herbaceous and woody climbers, palms, ferns, and epiphytes. Only 28 morphospecies were not determined to any taxonomic level. Floristic richness did not decrease nor increased significantly with stand age. In contrast, changing trends, albeit non significant, were observed for different life forms, as arboreal species gradually replaced herbaceous ones, whereas palms and tree ferns only appeared in stands of intermediate age and their abundances increased thereof. The results of this study suggest that a considerable proportion of the regional floristic diversity occurs in the secondary vegetation. The abandonment of traditional agricultural methods for modern but usually inadequate, productive systems threatens this floristic potential, because it affects characteristics of the system fundamental for the maintenance of species, such as stand age and the area of the primary vegetation matrix in which these stands are embedded.


2013 ◽  
Vol 53 (9) ◽  
pp. 924 ◽  
Author(s):  
A. D. Fisher ◽  
J. R. Webster

Pasture-based dairying in New Zealand and Australia has come under increasing animal welfare scrutiny as a result of changing public expectations for farm animal management. Concurrently, efficiency-driven changes in dairy management practices and a broadening of the feedbase beyond traditionally grazed pasture have resulted in increased intensification and stocking density within the dairy industries. This intensification has included a higher proportion of grain concentrates in the diet (particularly in Australia), and the greater management of cows off pasture and even in housing (particularly in New Zealand). Research to assess the animal welfare implications of these changes and to recommend good practice management has concentrated on issues of cow environments and cow feeding, including body condition. Research has shown that cows may be managed for a few hours per day on concrete surfaces without compromising their lying behaviour and other indicators of welfare, but that longer periods off pasture require the provision of a well drained and comfortable lying surface. Other research has defined the extremes of hot and cold/wet conditions beyond which cows benefit from provision of adequate shade and shelter. Research on cow body condition has indicated that welfare responses are aligned with measures of health and productivity in supporting the need to maintain a minimum body condition before calving and during the subsequent weight loss period of early lactation. Continued research, extension and industry adoption will enable dairy producers to address community expectations as they continue to change their farming practices.


2020 ◽  
Author(s):  
Patrick J. Brownsey ◽  
Daniel J. Ohlsen ◽  
Lara D. Shepherd ◽  
Whitney L. M. Bouma ◽  
Erin L. May ◽  
...  

Five indigenous species of Pellaea in Australasia belong to section Platyloma. Their taxonomic history is outlined, morphological, cytological and genetic evidence for their recognition reviewed, and new morphological and chloroplast DNA-sequence data provided. Australian plants of P. falcata (R.Br.) Fée are diploid and have longer, narrower pinnae than do New Zealand plants previously referred to P. falcata, which are tetraploid. Evidence indicates that P. falcata does not occur in New Zealand, and that collections so-named are P. rotundifolia (G.Forst.) Hook. Chloroplast DNA sequences are uninformative in distinguishing Australian P. falcata from New Zealand P. rotundifolia, but show that Australian P. nana is distinct from both. Sequence data also show that Australian and New Zealand populations of P. calidirupium Brownsey &amp; Lovis are closely related, and that Australian P. paradoxa (R.Br.) Hook. is distinct from other Australian species. Although P. falcata is diploid and P. rotundifolia tetraploid, P. calidirupium, P. nana (Hook.) Bostock and P. paradoxa each contain multiple ploidy levels. Diploid populations of Pellaea species are confined to Australia, and only tetraploids are known in New Zealand. Evolution of the group probably involved hybridisation, autoploidy, alloploidy, and possibly apomixis. Further investigation is required to resolve the status of populations from Mount Maroon, Queensland and the Kermadec Islands.


2009 ◽  
Vol 149 (2) ◽  
pp. 205-213 ◽  
Author(s):  
M BROWN ◽  
D WHITEHEAD ◽  
J HUNT ◽  
T CLOUGH ◽  
G ARNOLD ◽  
...  

2015 ◽  
Vol 512-513 ◽  
pp. 273-286 ◽  
Author(s):  
Miko U.F. Kirschbaum ◽  
Susanna Rutledge ◽  
Isoude A. Kuijper ◽  
Paul L. Mudge ◽  
Nicolas Puche ◽  
...  

Soil Research ◽  
1996 ◽  
Vol 34 (4) ◽  
pp. 583 ◽  
Author(s):  
PL Carey ◽  
RG Mclaren ◽  
KC Cameron ◽  
JR Sedcole

Concentrated toxic solutions of copper, chromium, and arsenic (CCA) are used extensively in the New Zealand timber preservation industry. A 2% w/v solution containing cupric, dichromate, and arsenate ions was leached through undisturbed soil monolith lysimeters containing the surface and subsurface horizons of 2 free-draining New Zealand soils. The resulting breakthrough curves were successfully modelled using the Gompertz equation for biomass growth. Differences between soil horizons in the fitted Gompertz parameter values were related to differences in soil physical and chemical properties affecting leaching. Results were compared to those from a previous study investigating pulse leaching of a concentrated CCA solution of similar ion ratio using the same soils. Generally, solution leaching produced breakthrough curves influenced more by the soil's physical structure and less by kinetic processes (i.e. sorption and diffusion). This was in part due to the high metal concentrations of the CCA solution and the decreased contact time between soil and solute in the solution leaching experiment. The relative ease of solute ion breakthrough increased in the order copper < arsenate < dichromate. The study suggests that further research is required to assess management implications for spills of these heavy metal ions to soils to prevent leaching or runoff to ground and surface water.


Sign in / Sign up

Export Citation Format

Share Document