A New Class of Glasses for Double-Crucible Optical Fibers with High Numerical Apertures

1984 ◽  
Vol 67 (10) ◽  
pp. 657-663
Author(s):  
G. A.C. M. SPIERINGS ◽  
C.M.G. JOCHEM ◽  
T.P.M. MEEUWSEN ◽  
G.E. THOMAS
Nanophotonics ◽  
2013 ◽  
Vol 2 (5-6) ◽  
pp. 455-474 ◽  
Author(s):  
Siddharth Ramachandran ◽  
Poul Kristensen

AbstractOptical vortex beams, possessing spatial polarization or phase singularities, have intriguing properties such as the ability to yield super-resolved spots under focussing, and the ability to carry orbital angular momentum that can impart torque to objects. In this review, we discuss the means by which optical fibers, hitherto considered unsuitable for stably supporting optical vortices, may be used to generate and propagate such exotic beams. We discuss the multitude of applications in which a new class of fibers that stably supports vortices may be used, and review recent experiments and demonstration conducted with such fibers.


1983 ◽  
pp. 351-351
Author(s):  
Longin Kociszewski ◽  
Ryszard Stepien ◽  
Jan Buzniak

1993 ◽  
Vol 73 (12) ◽  
pp. 8066-8075 ◽  
Author(s):  
J. Wang ◽  
J. R. Lincoln ◽  
W. S. Brocklesby ◽  
R. S. Deol ◽  
C. J. Mackechnie ◽  
...  

2006 ◽  
Vol 988 ◽  
Author(s):  
Neil Baril ◽  
John Badding ◽  
Pier Savio ◽  
Venkatraman Gopalan ◽  
Dong-Jin Won ◽  
...  

AbstractSolid state chemists have long been interested in templated growth of materials using many approaches. The resulting materials have been useful in areas as diverse as photonics and catalysis. Microstructured optical fibers (MOFs) form a new class of nanotemplates that can have sub 20 nm pores that are meters to kilometers long. We have developed a high-pressure microfluidic chemical process that allows for conformal deposition of materials within MOFs to form the most extreme aspect ratio semiconductor nanowires known. The wires can be spatially organized with respect to each other at dimensions down to the nanoscale because the MOF templates can be designed with almost any desired periodic or aperiodic pattern. Many if not most of the chemistries used for conventional chemical vapor deposition (CVD) can be adapted for this process. The resulting materials should enable a large range of scientific and technological applications.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6964
Author(s):  
Paweł Marć ◽  
Monika Żuchowska ◽  
Leszek R. Jaroszewicz

A polymer microtip manufactured at the end of a multi-mode optical fiber by using the photopolymerization process offers good reflective properties, therefore, it is applicable as an optical fiber sensor micro-transducer. The reflective properties of this microelement depend on the monomer mixture used, optical fiber type, and light source initiating polymerization. Experimental results have shown that a proper selection of these parameters has allowed the design of a new class of sensing structure which is sensitive to the refractive index (RI) changes of a liquid medium surrounding the microtip. An optical backscatter reflectometer was applied to test a group of micro-transducers. They were manufactured from two monomer mixtures on three different types of multi-mode optical fibers. They were polymerized by means of three optical light sources. Selected micro-transducers with optimal geometries were immersed in reference liquids with a known RI within the range of 1.3–1.7. For a few sensors, the linear dependences of return loss and RI have been found. The highest sensitivity was of around 208 dB/RIU with dynamic 32 dB within the range of 1.35–1.48. Sensing characteristics have minima close to RI of a polymer microelement, therefore, changing its RI can give the possibility to tune sensing properties of this type of sensor.


1989 ◽  
Vol 152 ◽  
Author(s):  
Jacques Lucas

ABSTRACTThe first generation of infrared optical waveguides operating in the mid I.R. region 0.3 to 4 μm is made from fluoride glasses based on zirconium tetrafluoride. A new family of vitreous materials based on indium fluoride appears to be also promising candidate. The state of art in the field including performances and limitations of these optical fibers will be described. A new class of heavy halide glasses based on tellurium chloride, bromide or iodide is presented in relation with their large optical transmission range covering the 8–12 μm region. First attempts in fiber preparation and planar waveguides deposition will be discussed and compared with the traditional chalcogenide glasses.


2021 ◽  
Vol 9 ◽  
Author(s):  
Arash Mafi ◽  
John Ballato

Nearly a decade ago, transverse Anderson localization was observed for the first time in an optical fiber with a random transverse refractive index profile. This started the development of a whole new class of optical fibers that guide light, not in a conventional core-cladding setting based on total internal reflection, but utilizing Anderson localization, where light can guide at any location across the transverse profile of the fiber. These fibers have since been used successfully in high-quality endoscopic image transport. They also show interesting nonlinear and active (lasing) properties with promising applications. This review will cover a brief history of these fibers with personal accounts of the events that led to their development in our research groups. It will then follow with recent progress and future perspectives on science and applications of these fibers.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Sign in / Sign up

Export Citation Format

Share Document