Phytophthora sojae: root rot pathogen of soybean and model oomycete

2007 ◽  
Vol 8 (1) ◽  
pp. 1-8 ◽  
Author(s):  
BRETT M. TYLER
Keyword(s):  
Root Rot ◽  
Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 114-123 ◽  
Author(s):  
A. Lebreton ◽  
C. Labbé ◽  
M. De Ronne ◽  
A. G. Xue ◽  
G. Marchand ◽  
...  

Phytophthora root rot, caused by Phytophthora sojae, is one of the most damaging diseases of soybean and the introgression of Rps (Resistance to P. sojae) genes into elite soybean lines is arguably the best way to manage this disease. Current bioassays to phenotype the gene-for-gene relationship are hampered with respect to reproducibility and long-term stability of isolates, and do not accurately predict horizontal resistance individually. The aim of our study was to investigate a new way of phenotyping P. sojae isolates and vertical and horizontal resistance in soybean that relies on zoospores inoculated directly into a hydroponic system. Inoculation of P. sojae isolates against a set of eight differentials accurately and reproducibly identified pathotypes over a period of two years. When applied to test vertical resistance of soybean lines with known and unknown Rps genes, the bioassay relied on plant dry weight to correctly identify all genes. In addition, simultaneous inoculations of three P. sojae isolates, collectively carrying eight major virulence factors against 64 soybean lines with known and unknown levels of horizontal resistance, separated the plants into five distinct groups of root rot, allowing the discrimination of lines with various degrees of partial resistance. Based on those results, this bioassay offers several advantages in facilitating efforts in breeding soybean for P. sojae resistance and in identifying virulence factors in P. sojae.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chuanzhong Zhang ◽  
Qun Cheng ◽  
Huiyu Wang ◽  
Hong Gao ◽  
Xin Fang ◽  
...  

AbstractPhytophthora sojae is a pathogen that causes stem and root rot in soybean (Glycine max [L.] Merr.). We previously demonstrated that GmBTB/POZ, a BTB/POZ domain-containing nuclear protein, enhances resistance to P. sojae in soybean, via a process that depends on salicylic acid (SA). Here, we demonstrate that GmBTB/POZ associates directly with soybean LIKE HETEROCHROMATIN PROTEIN1 (GmLHP1) in vitro and in vivo and promotes its ubiquitination and degradation. Both overexpression and RNA interference analysis of transgenic lines demonstrate that GmLHP1 negatively regulates the response of soybean to P. sojae by reducing SA levels and repressing GmPR1 expression. The WRKY transcription factor gene, GmWRKY40, a SA-induced gene in the SA signaling pathway, is targeted by GmLHP1, which represses its expression via at least two mechanisms (directly binding to its promoter and impairing SA accumulation). Furthermore, the nuclear localization of GmLHP1 is required for the GmLHP1-mediated negative regulation of immunity, SA levels and the suppression of GmWRKY40 expression. Finally, GmBTB/POZ releases GmLHP1-regulated GmWRKY40 suppression and increases resistance to P. sojae in GmLHP1-OE hairy roots. These findings uncover a regulatory mechanism by which GmBTB/POZ-GmLHP1 modulates resistance to P. sojae in soybean, likely by regulating the expression of downstream target gene GmWRKY40.


2017 ◽  
Vol 68 (6) ◽  
pp. 555
Author(s):  
Yinping Li ◽  
Suli Sun ◽  
Chao Zhong ◽  
Zhendong Zhu

Phytophthora root rot (PRR) caused by Phytophthora sojae, is one of the most destructive soybean diseases. The deployment of resistant cultivars is an important disease management strategy. To this aim, the development of a fast and effective method to evaluate soybean resistance to P. sojae is strategic. In this study, a detached-petiole inoculation technique was developed and its reliability was verified in soybean cultivars and segregant populations for PRR resistance. The detached-petiole and hypocotyl inoculation methods were used to assess the resistance of soybean cultivars, the F2 population of a Zhonghuang47 × Xiu94-11 cross, and the derived F2:3 population. The reactions of 13 analysed cultivars to three P. sojae isolates were consistent between the two inoculation techniques. The reactions of the F2 and F2:3 populations to isolate PsMC1 were 95.20% similar between the two inoculation methods. The segregation of the resistance and susceptibility fit a 3 : 1 ratio. Our results suggest that the detached-petiole technique is a reliable method, and reveal that the PRR resistance in Xiu94-11 is controlled by a single dominant gene. The phenotypic ratios of the tested Jikedou2 × Qichadou1 F2 population using the detached-petiole inoculation technique fit a 3 : 1 ratio (Resistance : Susceptibility). This demonstrated that Qichadou1 contains a single dominant gene conferring resistance to P. sojae. Our new detached-petiole inoculation technique is effective, reliable, non-destructive to the plant, and does not require an excessive amount of seeds. It may be suitable for the largescale screening of soybean resistance to multiple P. sojae isolates.


2019 ◽  
Vol 20 (2) ◽  
pp. 88-93 ◽  
Author(s):  
Hui Yan ◽  
Berlin Nelson

Phytophthora root rot, caused by Phytophthora sojae, is a major disease of soybean in North Dakota, especially in the Red River Valley (RRV). Planting resistant cultivars is the primary management. The resistance genes Rps 1c, 1k, 3a, and 6 are the most common genes deployed in this region. To determine the efficacy of these genes and document the pathotype changes in the population of P. sojae over several decades, a survey of pathotypes was conducted in 2015 in three counties in the southern RRV and compared with similar surveys conducted in 1991 to 1994 and 2002 to 2004 in the same area. The results showed that from 1991 to 1994 when 6% of the pathotypes could defeat the Rps1c gene, by 2004 it was 57% of the pathotypes, and that percentage remained the same in 2015. However, in 1994 no pathotype could defeat Rps 1k, but by 2004 it was 12% and in 2015 it was 41%. Pathotypes that defeat Rps 3a and 6 have been few over the years. Pathotypes that defeat both 1c and 1k increased from none to 31% between 1994 and 2015. With the increasing complexity of P. sojae pathotypes, new strategies for managing this pathogen in the future will be needed.


2014 ◽  
Vol 27 (12) ◽  
pp. 1379-1389 ◽  
Author(s):  
Qin Xiong ◽  
Wenwu Ye ◽  
Duseok Choi ◽  
James Wong ◽  
Yongli Qiao ◽  
...  

The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.


2017 ◽  
Vol 107 (2) ◽  
pp. 216-223 ◽  
Author(s):  
Chang-Jie Jiang ◽  
Shoji Sugano ◽  
Akito Kaga ◽  
Sung Shin Lee ◽  
Takuma Sugimoto ◽  
...  

Stem and root rot disease caused by Phytophthora sojae is devastating to soybean crops worldwide. Developing host resistance to P. sojae, considered the most effective and stable means to control this disease, is partly hampered by limited germplasm resources. In this study, we first modified conventional methods for a P. sojae resistance assay to a simpler and more cost-effective version, in which the P. sojae inoculum was mixed into the soil and the resistance was evaluated by survival rate (%) of soybean seedlings. This rating had significant correlations (P < 0.01) with the reduction in root fresh weight and the visual root rot severity. Applying this method to evaluate P. sojae resistance in soybean mini core collections comprising either 79 accessions originating from Japan (JMC) or 80 accessions collected around the world (WMC) revealed a wide variation in resistance among the individual varieties. In total, 38 accessions from the JMC and 41 from the WMC exhibited resistance or moderate resistance to P. sojae isolate N1 (with virulence to Rps1b, 3c, 4, 5, and 6), with ≥50% survival. Of these, 26 from the JMC and 29 from the WMC showed at least moderate resistance to P. sojae isolate HR1 (vir Rps1a-c, 1k, 2, 3a-c, 4-6, and 8). Additionally, 24 WCS accessions, in contrast to only 6 from the JMC, exhibited 100% survival after being challenged with both the N1 and HR1 isolates, suggesting a biogeographical difference between the two collections. We further verified two JMC varieties, Daizu and Amagi zairai 90D, for their resistance to an additional four P. sojae isolates (60 to 100% survival), which may provide new and valuable genetic sources for P. sojae resistance breeding in soybean.


2017 ◽  
Vol 91 ◽  
pp. 49-56 ◽  
Author(s):  
K.F. Chang ◽  
S.F. Hwang ◽  
H.U. Ahmed ◽  
Q. Zhou ◽  
S.E. Strelkov ◽  
...  

2000 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
R. A. Leitz ◽  
G. L. Hartman ◽  
W. L. Pedersen ◽  
C. D. Nickell

Phytophthora root rot of soybean (Glycine max (L.) Merr.), caused by Phytophthora sojae M. J. Kauffmann & J. W. Gerdemann, has been isolated throughout the soybean-producing regions of the United States. Posted 3 June 2000.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1171-1181 ◽  
Author(s):  
J. Alejandro Rojas ◽  
Timothy D. Miles ◽  
Michael D. Coffey ◽  
Frank N. Martin ◽  
Martin I. Chilvers

Phytophthora root rot of soybean, caused by Phytophthora sojae, is one of the most important diseases in the Midwestern United States, and is estimated to cause losses of up to 1.2 million metric tons per year. Disease may also be caused by P. sansomeana; however, the prevalence and damage caused by this species is not well known, partly due to limitations of current diagnostic tools. Efficient, accurate, and sensitive detection of pathogens is crucial for management. Thus, multiplex qPCR and isothermal RPA (recombinase polymerase amplification) assays were developed using a hierarchical approach to detect these Phytophthora spp. The assays consist of a genus-specific probe and two species-specific probes that target the atp9-nad9 region of the mitochondrial genome that is highly specific for the genus Phytophthora. The qPCR approach multiplexes the three probes and a plant internal control. The RPA assays run each probe independently with a plant internal control multiplexed in one amplification, obtaining a result in as little as 20 mins. The multicopy mitochondrial genome provides sensitivity with sufficient variability to discern among different Phytophthora spp. The assays were highly specific when tested against a panel of 100 Phytophthora taxa and range of Pythium spp. The consistent detection level of the assay was 100 fg for the qPCR assay and 10 pg for the RPA assay. The assays were validated on symptomatic plants collected from Michigan (U.S.) and Ontario (Canada) during the 2013 field season, showing correlation with isolation. In 2014, the assays were validated with samples from nine soybean producing states in the U.S. The assays are valuable diagnostic tools for detection of Phytophthora spp. affecting soybean.


Sign in / Sign up

Export Citation Format

Share Document