Review: Leucocyte-endothelial cell crosstalk at the blood-brain barrier: A prerequisite for successful immune cell entry to the brain

2011 ◽  
Vol 37 (1) ◽  
pp. 24-39 ◽  
Author(s):  
J. Greenwood ◽  
S. J. Heasman ◽  
J. I. Alvarez ◽  
A. Prat ◽  
R. Lyck ◽  
...  
2016 ◽  
Vol 36 (5) ◽  
pp. 862-890 ◽  
Author(s):  
Hans C Helms ◽  
N Joan Abbott ◽  
Malgorzata Burek ◽  
Romeo Cecchelli ◽  
Pierre-Olivier Couraud ◽  
...  

The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.


2019 ◽  
Vol 11 ◽  
pp. 117957351984065 ◽  
Author(s):  
Divine C Nwafor ◽  
Allison L Brichacek ◽  
Afroz S Mohammad ◽  
Jessica Griffith ◽  
Brandon P Lucke-Wold ◽  
...  

Sepsis is a systemic inflammatory disease resulting from an infection. This disorder affects 750 000 people annually in the United States and has a 62% rehospitalization rate. Septic symptoms range from typical flu-like symptoms (eg, headache, fever) to a multifactorial syndrome known as sepsis-associated encephalopathy (SAE). Patients with SAE exhibit an acute altered mental status and often have higher mortality and morbidity. In addition, many sepsis survivors are also burdened with long-term cognitive impairment. The mechanisms through which sepsis initiates SAE and promotes long-term cognitive impairment in septic survivors are poorly understood. Due to its unique role as an interface between the brain and the periphery, numerous studies support a regulatory role for the blood-brain barrier (BBB) in the progression of acute and chronic brain dysfunction. In this review, we discuss the current body of literature which supports the BBB as a nexus which integrates signals from the brain and the periphery in sepsis. We highlight key insights on the mechanisms that contribute to the BBB’s role in sepsis which include neuroinflammation, increased barrier permeability, immune cell infiltration, mitochondrial dysfunction, and a potential barrier role for tissue non-specific alkaline phosphatase (TNAP). Finally, we address current drug treatments (eg, antimicrobials and intravenous immunoglobulins) for sepsis and their potential outcomes on brain function. A comprehensive understanding of these mechanisms may enable clinicians to target specific aspects of BBB function as a therapeutic tool to limit long-term cognitive impairment in sepsis survivors.


2020 ◽  
Vol 9 (10) ◽  
pp. 3236
Author(s):  
Luke Wainwright ◽  
Iain P. Hargreaves ◽  
Ana R. Georgian ◽  
Charles Turner ◽  
R. Neil Dalton ◽  
...  

Primary coenzyme Q10 (CoQ10) deficiency is unique among mitochondrial respiratory chain disorders in that it is potentially treatable if high-dose CoQ10 supplements are given in the early stages of the disease. While supplements improve peripheral abnormalities, neurological symptoms are only partially or temporarily ameliorated. The reasons for this refractory response to CoQ10 supplementation are unclear, however, a contributory factor may be the poor transfer of CoQ10 across the blood–brain barrier (BBB). The aim of this study was to investigate mechanisms of CoQ10 transport across the BBB, using normal and pathophysiological (CoQ10 deficient) cell culture models. The study identifies lipoprotein-associated CoQ10 transcytosis in both directions across the in vitro BBB. Uptake via SR-B1 (Scavenger Receptor) and RAGE (Receptor for Advanced Glycation Endproducts), is matched by efflux via LDLR (Low Density Lipoprotein Receptor) transporters, resulting in no “net” transport across the BBB. In the CoQ10 deficient model, BBB tight junctions were disrupted and CoQ10 “net” transport to the brain side increased. The addition of anti-oxidants did not improve CoQ10 uptake to the brain side. This study is the first to generate in vitro BBB endothelial cell models of CoQ10 deficiency, and the first to identify lipoprotein-associated uptake and efflux mechanisms regulating CoQ10 distribution across the BBB. The results imply that the uptake of exogenous CoQ10 into the brain might be improved by the administration of LDLR inhibitors, or by interventions to stimulate luminal activity of SR-B1 transporters.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yvonne Cashinn Chia ◽  
Clarice Evey Anjum ◽  
Hui Rong Yee ◽  
Yenny Kenisi ◽  
Mike K. S. Chan ◽  
...  

Blood-brain barrier (BBB) is a term describing the highly selective barrier formed by the endothelial cells (ECs) of the central nervous system (CNS) homeostasis by restricting movement across the BBB. An intact BBB is critical for normal brain functions as it maintains brain homeostasis, modulates immune cell transport, and provides protection against pathogens and other foreign substances. However, it also prevents drugs from entering the CNS to treat neurodegenerative diseases. Stem cells, on the other hand, have been reported to bypass the BBB and successfully home to their target in the brain and initiate repair, making them a promising approach in cellular therapy, especially those related to neurodegenerative disease. This review article discusses the mechanism behind the successful homing of stem cells to the brain, their potential role as a drug delivery vehicle, and their applications in neurodegenerative diseases.


1990 ◽  
Vol 10 (5) ◽  
pp. 698-706 ◽  
Author(s):  
G. Moos Knudsen ◽  
K. D. Pettigrew ◽  
C. S. Patlak ◽  
M. M. Hertz ◽  
O. B. Paulson

Blood–brain barrier permeability to four large neutral and one basic amino acid was studied in 30 patients with the double indicator technique. The resultant 64 venous outflow curves were analyzed by means of two models that take tracer backflux and capillary heterogeneity into account. The first model considers the blood–brain barrier as a double membrane where amino acids from plasma enter the endothelial cell. When an endothelial cell volume of 0.001 ml/g was assumed, permeability from the blood into the endothelial cell was, for most amino acids, about 10–20 times larger than the permeability for the reverse direction. The second model assumes that the amino acids, after intracarotid injection, cross a single membrane barrier and enter a well-mixed compartment, the brain extracellular fluid, i.e., the endothelial cell is assumed to behave as a single membrane. With this model, for large neutral amino acids, the permeability out of the extracellular fluid space back to the blood was between 8 to 12 times higher than the permeability from the blood into the brain. Such a difference in permeabilities across the blood–brain barrier can almost entirely be ascribed to the effect of a nonlinear transport system combined with a relatively small brain amino acid metabolism. The significance of the possible presence of an energy-dependent A system at the abluminal side of the blood–brain barrier is discussed and related to the present findings. For both models, calculation of brain extraction by simple peak extraction values underestimates true unidirectional brain uptake by 17–40%. This raises methodological problems when estimating blood to brain transfer of amino acids with this traditional in vivo method.


Author(s):  
Maria Suessmilch ◽  
Julie-Myrtille Bourgognon ◽  
Jonathan Cavanagh

Brain inflammation markers are present in several psychiatric and neurodegenerative disorders like major depressive disorder, Alzheimers disease and schizophrenia. Inflammation is also linked to sickness behaviour (social withdrawal, decreased appetite, impaired concentration, irritability), a mechanism by which the body redirects its resources to fight infection and encourage wound healing. The topical application of Aldara triggers systemic type I and II interferon and pro-inflammatory cytokine production, immune cell infiltration into the skin and hyperkeratosis and has been used as a model of psoriasis since 2009(1). We have recently reported that Imiquimod, the active component of Aldara, can enter the brain within 4 hours of topical application(2) and induces a transcriptional interferon and chemokine response in the brain, along with the infiltration of immune cells, a reduction in hippocampal neurogenesis and a reduction in burrowing behaviour(3). To allow us to understand the mechanisms of immune cell entry into the brain following topical Aldara treatment, we investigated blood brain barrier (BBB) integrity using a number of experimental techniques.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Marion Clé ◽  
Caroline Desmetz ◽  
Jonathan Barthelemy ◽  
Marie-France Martin ◽  
Orianne Constant ◽  
...  

ABSTRACT The blood-brain barrier (BBB) largely prevents toxins and pathogens from accessing the brain. Some viruses have the ability to cross this barrier and replicate in the central nervous system (CNS). Zika virus (ZIKV) was responsible in 2015 to 2016 for a major epidemic in South America and was associated in some cases with neurological impairments. Here, we characterized some of the mechanisms behind its neuroinvasion using an innovative in vitro human BBB model. ZIKV efficiently replicated, was released on the BBB parenchyma side, and triggered subtle modulation of BBB integrity as well as an upregulation of inflammatory and cell adhesion molecules (CAMs), which in turn favored leukocyte recruitment. Finally, we showed that ZIKV-infected mouse models displayed similar CAM upregulation and that soluble CAMs were increased in plasma samples from ZIKV-infected patients. Our observations suggest a complex interplay between ZIKV and the BBB, which may trigger local inflammation, leukocyte recruitment, and possible cerebral vasculature impairment. IMPORTANCE Zika virus (ZIKV) can be associated with neurological impairment in children and adults. To reach the central nervous system, viruses have to cross the blood-brain barrier (BBB), a multicellular system allowing a tight separation between the bloodstream and the brain. Here, we show that ZIKV infects cells of the BBB and triggers a subtle change in its permeability. Moreover, ZIKV infection leads to the production of inflammatory molecules known to modulate BBB integrity and participate in immune cell attraction. The virus also led to the upregulation of cellular adhesion molecules (CAMs), which in turn favored immune cell binding to the BBB and potentially increased infiltration into the brain. These results were also observed in a mouse model of ZIKV infection. Furthermore, plasma samples from ZIKV-infected patients displayed an increase in CAMs, suggesting that this mechanism could be involved in neuroinflammation triggered by ZIKV.


2021 ◽  
Author(s):  
Sidar Aydin ◽  
Javier Pareja ◽  
Vivianne M. Schallenberg ◽  
Armelle Klopstein ◽  
Thomas Gruber ◽  
...  

Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). High numbers of CD8+ T cells are found in MS lesions and antigen (Ag)-presentation at the BBB was proposed to promote CD8+ T-cell entry into the CNS. Employing live cell imaging and primary mouse brain microvascular endothelial cells (pMBMECs) as in vitro model of the BBB and a mouse model of CNS autoimmunity, we here show that pMBMECs process and present antigens leading to effector CD8+ T-cell differentiation. Under physiological flow, endothelial Ag-presentation prohibited CD8+ T-cell crawling and diapedesis leading to pMBMEC apoptosis. Reduced motility of Ag-specific CD8+ T cells was also observed in CNS microvessels in neuroinflammation in vivo. Luminal MHC class I Ag-presentation at the BBB thus prohibits CD8+ T-cell entry into the CNS and rather triggers CD8+ T cell mediated focal BBB breakdown.


Sign in / Sign up

Export Citation Format

Share Document