scholarly journals Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy

2010 ◽  
Vol 59 (5) ◽  
pp. 954-962 ◽  
Author(s):  
P. Ferrante ◽  
M. Scortichini
Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1350
Author(s):  
Tao Wang ◽  
Zhan-Hui Jia ◽  
Ji-Yu Zhang ◽  
Min Liu ◽  
Zhong-Ren Guo ◽  
...  

Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the most important disease resistance genes in plants. The genome sequence of kiwifruit (Actinidia chinensis) provides resources for the characterization of NBS-LRR genes and identification of new R-genes in kiwifruit. In the present study, we identified 100 NBS-LRR genes in the kiwifruit genome and they were grouped into six distinct classes based on their domain architecture. Of the 100 genes, 79 are truncated non-regular NBS-LRR genes. Except for 37 NBS-LRR genes with no location information, the remaining 63 genes are distributed unevenly across 18 kiwifruit chromosomes and 38.01% of them are present in clusters. Seventeen families of cis-acting elements were identified in the promoters of the NBS-LRR genes, including AP2, NAC, ERF and MYB. Pseudomonas syringae pv. actinidiae (pathogen of the kiwifruit bacterial canker) infection induced differential expressions of 16 detected NBS-LRR genes and three of them are involved in plant immunity responses. Our study provides insight of the NBS-LRR genes in kiwifruit and a resource for the identification of new R-genes in the fruit.


2016 ◽  
Vol 69 ◽  
pp. 30-38
Author(s):  
K.J. Froud ◽  
N. Cogger ◽  
R.M. Beresford

Longer term effects of Pseudomonas syringae pv actinidiae biovar 3 (Psa) on Hayward kiwifruit (Actinidia chinensis var deliciosa) production are unclear and there is uncertainty about what impact orchard activities could have on disease prevalence The aim of the present study was to determine the validity of the data obtained from a crosssectional observational study using a quantitative postal questionnaire on disease and risk factor prevalence from commercial growers of Hayward The questionnaire was sent to 1669 growers and 442 responded (26) a response rate similar to that of other agriculture surveys in New Zealand Nonresponses were analysed against a range of factors to assess response bias There was a higher response rate from organic growers and those affiliated with specific packhouses There were no differences between responders and nonresponders according to the period of time their orchard had been infected with Psa or to orchard productivity We conclude that a postal questionnaire was an effective way to obtain quantitative disease risk factor and hygiene data from commercial producers


2017 ◽  
Vol 70 ◽  
pp. 272-284 ◽  
Author(s):  
K.V. Wurms ◽  
E. Gould ◽  
A. Ah Chee ◽  
J. Taylor ◽  
B. Curran ◽  
...  

Pseudomonas syringae pv. actinidiae (Psa), which causes bacterial canker, is the most serious global pathogen of kiwifruit. Like most bacterial pathogens, control options are limited, but elicitors can reduce disease significantly, particularly those that induce the salicylic acid (SA) pathway. Acibenzolar-S-methyl (ASM), a SA analogue, is one of the most effective elicitors for Psa control. In this study, real-time PCR (qPCR) was used to measure the expression of 18 putative defence genes in Actinidia chinensis var. chinensis ‘Hort16A’ in response to Psa and ASM. Application of ASM led to up-regulation of RPM1 interacting protein 4 (RIN4), phenylalanine ammonia lyase (PAL), a hypersensitivity-induced response protein (HIRP), and β-1,3-glucosidase. Expression of PAL and HIRP was further enhanced when elicitor application and Psa-inoculation were combined. Elevated gene expression was correlated with decreased disease expression, and supports the hypothesis that elicitor-treated plants are primed to react more rapidly and/or strongly to pathogens.


2017 ◽  
Vol 70 ◽  
pp. 310-314
Author(s):  
J.L. Tyson ◽  
S.J. Dobson ◽  
M.A. Manning

Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker of kiwifruit, which is an ongoing threat to New Zealand kiwifruit production. Disease control depends on orchard practices such as removal of visibly diseased material, pruning during low-risk periods, and the application of foliar bactericides. Although the use of copper compounds on Actinidia species (kiwifruit) can cause phytotoxicity, copper-based formulations remain a key component of Psa control in New Zealand. The effect of single copper applications on Psa infection of ‘Hort16A’ trap plants was studied over the Spring of 2014 (Sept—Nov). Psa leaf spots were observed at the beginning of October, appearing first on the untreated plants. Although the copper sprays did not achieve complete protection, particularly as the inoculum built up during November, the copper-sprayed plants always had less disease than the untreated plants.


HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1354F-1355
Author(s):  
Elzbieta Krzesinska ◽  
Anita Nina Miller

An excised twig assay was developed to evaluate cherry geno-types for their tolerance to Pseudomonas syringae pv. syringae. One-year-old wood was collected at monthly intervals from October until January of `Royal Ann', `Corum', and a number of cherry rootstock. The rootstock included; F/12–1 and Giessen (GI) and M × M selections. A 2-cm incision (“^”-shaped flap) was made on each twig. A 20-μl droplet of inoculum or water was placed onto each incision. The inoculum was prepared with one avirulent (K4) and three virulent strains (W4N54, AP2, B15) concentrations (105, 106, or 107 cfu). Inoculated twigs were placed in test tubes and incubated at 15C in high relative humidity for 3 weeks. After incubation, twigs were evaluated for gummosis production (0–3, 0 = no gummosis), incision browning (1–4, 1 = yellow pith), and callus production (0–1, 0 = no callus). The concentration of bacterial suspension had no effect on symptom development. No gummosis or browning was observed on twigs inoculated with water or the avirulent strain. Based on the gummosis and browning ratings, rootstock M × M 2, M × M 39, M × M 60, GI 148-1, GI 154-2, and GI 154-4 were found to be resistant to these three strains of P. syringae in this assay. Root-stock F 12-1, GI 169–15, GI 172–9, and GI 173-9 were found to be tolerant.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1461
Author(s):  
Nuno Mariz-Ponte ◽  
Laura Regalado ◽  
Emil Gimranov ◽  
Natália Tassi ◽  
Luísa Moura ◽  
...  

Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4–6.2 µM, respectively and MBC 3.4–10 µM for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.


Sign in / Sign up

Export Citation Format

Share Document