scholarly journals Modification of epithelial cell barrier permeability and intercellular junctions by Clostridium sordellii lethal toxins

2006 ◽  
Vol 8 (7) ◽  
pp. 1070-1085 ◽  
Author(s):  
Catherine Boehm ◽  
Maryse Gibert ◽  
Blandine Geny ◽  
Michel R. Popoff ◽  
Pedro Rodriguez
1984 ◽  
Vol 66 (1) ◽  
pp. 81-93
Author(s):  
F.V. Sepulveda ◽  
J.D. Pearson

We have studied the cell-to-cell passage of uridine nucleotides in two renal epithelial cell lines (LLC-PK1 and MDCK) and in porcine aortic endothelial cells (PAE). All three cell types incorporated tritiated uridine. After a 3 h incubation the radioactivity was predominantly in the form of acid-soluble compounds, mainly UTP. Prelabelled LLC-PK1 or MDCK cells were unable to transfer radioactivity to added adjacent, non-labelled cells, whereas PAE cells readily formed communicating intercellular junctions, as judged by autoradiographic analysis after a 3 h co-culture period. Cell-to-cell communication in either of the renal cell lines was not promoted by treatment with dibutyryl cyclic AMP and methylisobutylxanthine. Radioactivity incorporated into the acid-insoluble pool was not available for intercellular transfer, as assessed in experiments in which cells were prelabelled 24 h before co-culture.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254731
Author(s):  
Jingjing Wang ◽  
Maureen Mongan ◽  
Xiang Zhang ◽  
Ying Xia

Epidermis is the most outer layer of the skin and a physical barrier protecting the internal tissues from mechanical and environmental insults. The basal keratinocytes, which, through proliferation and differentiation, supply diverse cell types for epidermal homeostasis and injury repair. Sustainable culture of murine keratinocyte, however, is a major obstacle. Here we developed murine keratinocyte lines using low-Ca2+ (0.06 mM) keratinocyte serum-free medium (KSFM-Ca2+) without feeder cells. Cells derived in this condition could be subcultured for >70 passages. They displayed basal epithelial cell morphology and expressed keratin (Krt) 14, but lacked the epithelial-characteristic intercellular junctions. Moreover, these cells could be adapted to grow in the Defined-KSFM (DKSFM) media containing 0.15 mM Ca2+, and the adapted cells established tight- and adherens-junctions and exhibited increased Krt1/10 expression while retained subculture capacity. Global gene expression studies showed cells derived in KSFM-Ca2+ media had enriched stem/proliferation markers and cells adapted in DKSFM media had epithelial progenitor signatures. Correspondingly, KSFM-Ca2+-derived cells exhibited a remarkable capacity of clonal expansion, whereas DKSFM-adapted cells could differentiate to suprabasal epithelial cell types in 3-dimentional (3D) organoids. The generation of stem-like murine keratinocyte lines and the conversion of these cells to epithelial progenitors capable of terminal differentiation provide the critically needed resources for skin research.


1982 ◽  
Vol 95 (3) ◽  
pp. 853-863 ◽  
Author(s):  
D R Burgess

Various models have been put forward suggesting ways in which brush borders from intestinal epithelial cells may be motile. Experiments documenting putative brush border motility have been performed on isolated brush borders and have generated models suggesting microvillar retraction or microvillar rootlet interactions. The reported Ca++ ATP-induced retraction of microvilli has been shown, instead, to be microvillar dissolution in response to Ca++ and not active brush border motility. I report here studies on the reactivation of motility in intact sheets of isolated intestinal epithelium. Whole epithelial sheets were glycerinated, which leaves the brush border and intercellular junctions intact, and then treated with ATP, PPi, ITP, ADP, GTP, or delta S-ATP. Analysis by video enhanced differential interference-contrast microscopy and thin-section transmission electron microscopy reveals contractions in the terminal web region causing microvilli to be fanned apart in response to ATP and delta S-ATP but not in response to ADP, PPi, ITP, or GTP. Electron microscopy reveals that the contractions occur at the level of the intermediate junction in a circumferential constriction which can pull cells completely apart. This constriction occurs in a location occupied by an actin-containing circumferential band of filaments, as demonstrated by S-1 binding, which completely encircles the terminal web at the level of the intermediate junction. Upon contraction, this band becomes denser and thicker. Since myosin, alpha-actinin and tropomyosin, in addition to actin, have been localized to this region of the terminal web, it is proposed that the intestinal epithelial cell can be motile via a circumferential terminal web contractile ring analogous to the contractile ring of dividing cells.


2021 ◽  
Author(s):  
Erin C Steinbach ◽  
Johanna M Smeekens ◽  
Satyaki Roy ◽  
Takahiko Toyonaga ◽  
Caleb Cornaby ◽  
...  

Peanut allergy reaction severity correlates with increased intestinal epithelial cell (IEC) barrier permeability. CC027/GeniUnc mice develop peanut allergy by intragastric administration of peanut proteins without adjuvant. We report that peanut-allergic CC027/GeniUnc mice showed increased IEC barrier permeability and systemic peanut allergen Ara h 2 after challenge. Jejunal epithelial cell transcriptomics showed effects of peanut allergy on IEC proliferation, survival, and metabolism, and revealed IEC-predominant angiopoietin like-4 (Angptl4) as a unique feature of CC027/GeniUnc peanut allergy. CC027/GeniUnc mice and peanut-allergic pediatric patients demonstrated significantly higher serum Angptl4 and ANGPTL4 compared to control C3H/HeJ mice and non-peanut-allergic but atopic patients, respectively, highlighting its potential as a biomarker of peanut allergy.


2015 ◽  
Vol 104 (3) ◽  
pp. 1065-1075 ◽  
Author(s):  
Marlyn D. Laksitorini ◽  
Paul K. Kiptoo ◽  
Ngoc H. On ◽  
James A. Thliveris ◽  
Donald W. Miller ◽  
...  

Author(s):  
V. F. Allison ◽  
G. C. Fink ◽  
G. W. Cearley

It is well known that epithelial hyperplasia (benign hypertrophy) is common in the aging prostate of dogs and man. In contrast, little evidence is available for abnormal epithelial cell growth in seminal vesicles of aging animals. Recently, enlarged seminal vesicles were reported in senescent mice, however, that enlargement resulted from increased storage of secretion in the lumen and occurred concomitant to epithelial hypoplasia in that species.The present study is concerned with electron microscopic observations of changes occurring in the pseudostratified epithelium of the seminal vescles of aging rats. Special attention is given to certain non-epithelial cells which have entered the epithelial layer.


Sign in / Sign up

Export Citation Format

Share Document