scholarly journals Participation of nuclear factor (erythroid 2-related), factor 2 in ameliorating lithocholic acid-induced cholestatic liver injury in mice

2010 ◽  
Vol 161 (5) ◽  
pp. 1111-1121 ◽  
Author(s):  
KP Tan ◽  
GA Wood ◽  
M Yang ◽  
S Ito
2018 ◽  
Vol 46 (02) ◽  
pp. 469-488 ◽  
Author(s):  
Ji Yun Jung ◽  
Sang Mi Park ◽  
Hae Li Ko ◽  
Jong Rok Lee ◽  
Chung A Park ◽  
...  

Oxidative stress induced by reactive oxygen species is the main cause of various liver diseases. This study investigated the hepatoprotective effect of Epimedium koreanum Nakai water extract (EKE) against arachidonic acid (AA)[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells and carbon tetrachloride (CCl4-)-mediated acute liver injury in mice. Pretreatment with EKE (30 and 100[Formula: see text][Formula: see text]g/mL) significantly inhibited AA[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells by preventing changes in the expression of cleaved caspase-3 and poly(ADP-ribose) polymerase. EKE attenuated hydrogen peroxide production, glutathione depletion, and mitochondrial membrane dysfunction. EKE also increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), transactivated anti-oxidant response element harboring luciferase activity, and induced the expression of anti-oxidant genes. Furthermore, the cytoprotective effect of EKE against AA[Formula: see text][Formula: see text][Formula: see text]iron was blocked in Nrf2 knockout cells. Ultra-performance liquid chromatography analysis showed that EKE contained icariin, icaritin, and quercetin; icaritin and quercetin were both found to protect HepG2 cells from AA[Formula: see text][Formula: see text][Formula: see text]iron via Nrf2 activation. In a CCl4-induced mouse model of liver injury, pretreatment with EKE (300[Formula: see text]mg/kg) for four consecutive days ameliorated CCl4-mediated increases in serum aspartate aminotransferase activity, histological activity index, hepatic parenchyma degeneration, and inflammatory cell infiltration. EKE also decreased the number of nitrotyrosine-, 4-hydroxynonenal-, cleaved caspase-3-, and cleaved poly(ADP-ribose) polymerase-positive cells in hepatic tissues. These results suggest EKE is a promising candidate for the prevention or treatment of oxidative stress-related liver diseases via Nrf2 activation.


2012 ◽  
Vol 32 (12) ◽  
pp. 2839-2846 ◽  
Author(s):  
Alan R. Collins ◽  
Anisha A. Gupte ◽  
Ruirui Ji ◽  
Maricela R. Ramirez ◽  
Laurie J. Minze ◽  
...  

2021 ◽  
Author(s):  
Yangping Zhu ◽  
Changling Wang ◽  
Jingyi Yu ◽  
Yingying Miao ◽  
Yuanyuan Chai ◽  
...  

Abstract Background: Lithocholic acid (LCA) is one kind of endogenous bile acids which is a typical index in primary biliary cholangitis (PBC). It could cause severe cholestatic liver injury in rodents. Obeticholic acid (OCA) is a major treatment for PBC. However, its effect and mechanism in LCA-induced liver injury was still unclear beside of bile acid regulation. This study aims to evaluate the hepatoprotective effect and mechanism of OCA against LCA-induced cholestatic liver injury. Results: LCA-induced upregulations of ALT, AST, ALP and TBA were reduced and the bile acid profiles in serum, liver and bile were improved significantly by OCA. This bile acid regulating effect of OCA was mainly based on increasing the expression of bile acid efflux transporters bile salt export pump (BSEP), multidrug resistant associated protein 2 (MRP2), MRP3 and multi-drug resistance 3 (MDR3) instead of bile acid synthesis inhibition. Furthermore, it was found that OCA reduced the activation and expression of Caspase 8/3 signaling pathway without the change of p-MLKL and BAX in LCA-induced cholestatic model. And the inhibition of Caspase 8/3 signaling pathway depended on the activation of Farnesoid X receptor (FXR) to inhibit Caspase 8 cleavage to form a active complex.Conclusions: This study found OCA improved LCA-induced cholestatic liver injury via FXR-induced exogenous cell apoptosis, which provided a new evidence for the application of OCA to ameliorate PBC in clinical.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1467 ◽  
Author(s):  
Caroline Klindt ◽  
Maria Reich ◽  
Birte Hellwig ◽  
Jan Stindt ◽  
Jörg Rahnenführer ◽  
...  

TGR5 (Gpbar1) is a G protein-coupled receptor responsive to bile acids (BAs), which is expressed in different non-parenchymal cells of the liver, including biliary epithelial cells, liver-resident macrophages, sinusoidal endothelial cells (LSECs), and activated hepatic stellate cells (HSCs). Mice with targeted deletion of TGR5 are more susceptible towards cholestatic liver injury induced by cholic acid-feeding and bile duct ligation, resulting in a reduced proliferative response and increased liver injury. Conjugated lithocholic acid (LCA) represents the most potent TGR5 BA ligand and LCA-feeding has been used as a model to rapidly induce severe cholestatic liver injury in mice. Thus, TGR5 knockout (KO) mice and wildtype (WT) littermates were fed a diet supplemented with 1% LCA for 84 h. Liver injury and gene expression changes induced by the LCA diet revealed an enrichment of pathways associated with inflammation, proliferation, and matrix remodeling. Knockout of TGR5 in mice caused upregulation of endothelin-1 (ET-1) expression in the livers. Analysis of TGR5-dependent ET-1 signaling in isolated LSECs and HSCs demonstrated that TGR5 activation reduces ET-1 expression and secretion from LSECs and triggers internalization of the ET-1 receptor in HSCs, dampening ET-1 responsiveness. Thus, we identified two independent mechanisms by which TGR5 inhibits ET-1 signaling and modulates portal pressure.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 346 ◽  
Author(s):  
Aladaileh ◽  
Abukhalil ◽  
Saghir ◽  
Hanieh ◽  
Alfwuaires ◽  
...  

Cyclophosphamide (CP) is a widely used chemotherapeutic agent; however, its clinical application is limited because of its multi-organ toxicity. Galangin (Gal) is a bioactive flavonoid with promising biological activities. This study investigated the hepatoprotective effect of Gal in CP-induced rats. Rats received Gal (15, 30 and 60 mg/kg/day) for 15 days followed by a single dose of CP at day 16. Cyclophosphamide triggered liver injury characterized by elevated serum transaminases, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and histopathological manifestations. Increased hepatic reactive oxygen species, malondialdehyde, nitric oxide, and oxidative DNA damage along with declined glutathione and antioxidant enzymes were demonstrated in CP-administered rats. CP provoked hepatic nuclear factor-kappaB (NF-κB) phosphorylation and increased mRNA abundance of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) both expression and serum levels. Gal prevented CP-induced liver injury, boosted antioxidants and suppressed oxidative stress, DNA damage, NF-κB phosphorylation and pro-inflammatory mediators. Gal diminished Bax and caspase-3, and increased B-cell lymphoma-2 (Bcl-2) in liver of CP-administered rats. In addition, Gal increased peroxisome proliferator-activated receptor gamma (PPARγ) expression and activated hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) signaling showed by the increase in Nrf2, NAD(P)H: quinone acceptor oxidoreductase-1 (NQO-1) and heme oxygenase 1 (HO-1) in CP-administered rats. These findings suggest that Gal prevents CP hepatotoxicity through activation of Nrf2/HO-1 signaling and attenuation of oxidative damage, inflammation and cell death. Therefore, Gal might represent a promising adjuvant therapy to prevent hepatotoxicity in patients on CP treatment.


Marine Drugs ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. 552 ◽  
Author(s):  
Jiawen Zheng ◽  
Xiaoxiao Tian ◽  
Wen Zhang ◽  
Pingan Zheng ◽  
Fangfang Huang ◽  
...  

Fucoxanthin (Fx) is a natural extract from marine seaweed that has strong antioxidant activity and a variety of other bioactive effects. This study elucidated the protective mechanism of Fx on alcoholic liver injury. Administration of Fx was associated with lower pathological effects in liver tissue and lower serum marker concentrations for liver damage induced by alcohol. Fx also alleviated oxidative stress, and lowered the level of oxides and inflammation in liver tissue. Results indicate that Fx attenuated alcohol-induced oxidative lesions and inflammatory responses by activating the nuclear factor erythrocyte-2-related factor 2 (Nrf2)-mediated signaling pathway and down-regulating the expression of the toll-like receptor 4 (TLR4)-mediated nuclear factor-kappa B (NF-κB) signaling pathway, respectively. Our findings suggest that Fx can be developed as a potential nutraceutical for preventing alcohol-induced liver injury in the future.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Qiong-Hui Huang ◽  
Lie-Qiang Xu ◽  
Yu-Hong Liu ◽  
Jia-Zhen Wu ◽  
Xue Wu ◽  
...  

Excessive alcohol consumption leads to serious liver injury, associating with oxidative stress and inflammatory response. Previous study has demonstrated that polydatin (PD) exerted antioxidant and anti-inflammatory effects and attenuated ethanol-induced liver damage, but the research remained insufficient. Hence, this experiment aimed to evaluate the hepatoprotective effect and potential mechanisms of PD on ethanol-induced hepatotoxicity. Our results showed that PD pretreatment dramatically decreased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in the serum, suppressed the malonaldehyde (MDA) and triglyceride (TG) content and the production of reactive oxygen species (ROS), and enhanced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), andalcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH), paralleled by an improvement of histopathology alterations. The protective effect of PD against oxidative stress was probably associated with downregulation of cytochrome P450 2E1 (CYP2E1) and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target gene haem oxygenase-1 (HO-1). Moreover, PD inhibited the release of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) via downregulating toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) p65. To conclude, PD pretreatment protects against ethanol-induced liver injury via suppressing oxidative stress and inflammation.


Sign in / Sign up

Export Citation Format

Share Document