THE INFLUENCE OF LEAFHOPPER (EMP0ASCA KRAEMERI) ATTACK DURING VARIOUS BEAN (PHASEOLUS VULGARIS) PLANT GROWTH STAGES ON SEED YIELD

1978 ◽  
Vol 23 (2) ◽  
pp. 115-120 ◽  
Author(s):  
A. SCHOONHOVEN ◽  
L. A. GÓMEZ ◽  
F. AVALOS
1982 ◽  
Vol 60 (8) ◽  
pp. 1423-1427 ◽  
Author(s):  
R. J. Rennie ◽  
G. A. Kemp

Nodulation and N2 fixation have not been reported in beans (Phaseolus vulgaris L.) below a temperature of 13 °C but, in southern Alberta, temperatures at planting may be as low as 10 °C. Two varieties of pea beans, 'Aurora' and 'Kentwood,' were inoculated at three growth stages (seeding, primary leaf horizontal, or first trifoliate leaf open) and grown at 10, 12, 14, or 16 °C. Nodulation and acetylene (C2H2) reduction occurred in both varieties at temperatures as low as 10 °C. At the lower temperatures, cold adaptability of the plant for early root growth determined the ability for nodulation and N2 fixation. At higher temperatures, plant-growth stage was a determining factor. 'Aurora' was superior to 'Kentwood' at 10 °C in nodulation, dry matter (DM), N yield, and N2 fixation because of its tolerance to low temperatures during early root growth. Inoculation with Rhizobium phaseoli at more advanced plant-growth stages decreased the time for nodulation at all four temperatures but resulted in higher yield and more N2 fixation in 'Aurora' only at 14 and 16 °C. At 10 °C, inoculation at seeding was more effective than at the other two growth stages for both varieties. Thus plant growth stages and growth temperature both determined the ability of a bean variety to support N2 fixation at various low temperatures.


OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 36 ◽  
Author(s):  
Abdelghani Nabloussi ◽  
Hakima Bahri ◽  
Mariame Lakbir ◽  
Hajar Moukane ◽  
Abdellah Kajji ◽  
...  

Rapeseed (Brassica napus L.) crop has a high yield potential in Morocco, particularly in the Gharb region. However, this area is subjected to relatively frequent water floods usually accompanied with soil waterlogging, which is harmful for the crop. This study aimed to assess the behavior and productivity of four Moroccan varieties under waterlogging stress conditions at four plant growth stages, against the control (absence of waterlogging). A field trial was carried out at the INRA experiment station of Allal Tazi during 2013/2014, and a pot experiment was conducted under shelter at the National School of Agriculture of Meknes during 2014/2015. The results obtained show that waterlogging stress significantly affected most of the studied parameters for all varieties and that germination and post-emergence seedling stages were the most sensitive to waterlogging stress conditions. Particularly, seed yield was drastically reduced for all varieties, and the reduction rate ranged from 19% for “INRA-CZH3” to 73% for “Narjisse” when waterlogging happened under rosette and young seedling stages, respectively. Overall, the variety “INRA-CZH3” presented the best agronomic performance and was the most tolerant to waterlogging occurring at different plant growth stages. Therefore, we recommend cultivation of this variety in the Gharb area. Its tolerance to such stress conditions is certainly attributed to its developed root system, its high seedling vigor and its large collar diameter. The two latter traits presented a high correlation with seed yield components and, thus, we recommend their use as selection criteria to breed for waterlogging rapeseed tolerance.


2021 ◽  
Author(s):  
Shu Wang ◽  
Dao-Wei Zhou

Abstract The relationships among developmental stability, canalization and phenotypic plasticity have not been well understood. Inconsistent conclusions from different studies suggested the complexity of their associations, probably depending on specific traits, environmental contexts and plant growth stages. To address this issue, we conducted three experiments (EXP I ~ III) with several annual herbaceous species, to investigate the relationships among leaf (or cotyledon) developmental stability, canalization and plasticity and their variations with different biotic and abiotic environmental conditions and plant growth stages, with comparisons among different species at their early growth stage. We analyzed variations in mean trait value, lamina fluctuating asymmetry (FA), coefficient of variation (CV) and plasticity (RDPIs) and their correlations for lamina size (LS) of individual plants, for LS, petiole length (PL) and petiole angle (PA) of different plant layers in Abutilon theophrasti at three densities in infertile and fertile (or only fertile) soil conditions at three (or two) stages, and for cotyledon size (CS) of five species in contrasting light conditions and seeding depths. High vs. low density decreased LS (with negative RDPIs), FA indexes and CVs, either for individual plants or different layers, especially in fertile soil. Shading was more likely to increase CS (except for A. therophrasti) and FA and decrease CV; deep seeding increased CS of some species in full light, but decreased CS and FA of other species in shading (except for A. therophrasti). FA indexes more likely had positive correlations with mean value, CV and RDPIs of traits; correlations between CV and RDPIs can be positive, negative or insignificant. Correlations among the three variables were more likely positive or insignificant for traits of LS, CS and PL, but more likely negative or insignificant for PA. High density and infertile soil may favor more positive over negative correlations among variables. Results suggested higher levels of lamina FA more likely indicate higher growth rates of plants or modules. Developmental stability was more likely to have positive correlations with canalization, and negative correlations with plasticity, indicating certain common mechanisms associated with them. Environmental stresses can lead to greater phenotypic variations at different levels, facilitating cooperation between the three processes in dealing with environmental challenges.


2013 ◽  
Vol 85 (2) ◽  
pp. 813-822 ◽  
Author(s):  
LEONARDO B. DE CARVALHO ◽  
PEDRO L.C.A. ALVES ◽  
STEPHEN O. DUKE

Weed management systems in almost all Brazilian coffee plantations allow herbicide spray to drift on crop plants. In order to evaluate if there is any effect of the most commonly used herbicide in coffee production, glyphosate, on coffee plants, a range of glyphosate doses were applied directly on coffee plants at two distinct plant growth stages. Although growth of both young and old plants was reduced at higher glyphosate doses, low doses caused no effects on growth characteristics of young plants and stimulated growth of older plants. Therefore, hormesis with glyphosate is dependent on coffee plant growth stage at the time of herbicide application.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7070
Author(s):  
Chenxu Liu ◽  
Hui Zhou ◽  
Jie Zhou

With the frequent occurrence of extreme climate, global agriculture is confronted with unprecedented challenges, including increased food demand and a decline in crop production. Nanotechnology is a promising way to boost crop production, enhance crop tolerance and decrease the environmental pollution. In this review, we summarize the recent findings regarding innovative nanotechnology in crop production, which could help us respond to agricultural challenges. Nanotechnology, which involves the use of nanomaterials as carriers, has a number of diverse applications in plant growth and crop production, including in nanofertilizers, nanopesticides, nanosensors and nanobiotechnology. The unique structures of nanomaterials such as high specific surface area, centralized distribution size and excellent biocompatibility facilitate the efficacy and stability of agro-chemicals. Besides, using appropriate nanomaterials in plant growth stages or stress conditions effectively promote plant growth and increase tolerance to stresses. Moreover, emerging nanotools and nanobiotechnology provide a new platform to monitor and modify crops at the molecular level.


2016 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Farid Kuswantoro ◽  
R.C. Hidayat Soesilohadi

Paddy field was a dynamic and biodiversity rich ecosystems. Insect diversity in paddy field ecosystem was infected by paddy plant growth stages. Grass frog (Fejervarya limnocharis) ate insects as their natural prey. Insect population dynamics during vegetative, generative and reproductive stage of paddy plants infected F. limnocharis natural prey. This research aims were to study insect diversity and F. limnocharis insect prey diversity of vegetative, reproductive and generative paddy plant growth stages at Panggungharjo village, Sewon, Bantul. Insect sampling was conducted by direct survey method while F. limnocharis collection conducted by Visual Encounter Survey (VES) method. Ninety eight insect species from 51 different families and nine orders of insect were found. The orders were Coleoptera, Diptera, Hymenoptera, Odonata, Orthoptera, Dictyoptera, Dermaptera, Hemiptera and Lepidoptera. Stomachs analysis indicated F. limnocharis ate nine insect orders. The orders were Coleoptera, Diptera, Hymenoptera, Orthoptera, Dictyoptera, Dermaptera, Hemiptera, Lepidoptera and Isoptera. Most commonly insect prey in vegetative, reproductive and generative phase paddy growth stage were the members of the Order Coleoptera, Family Acrididae (Orthoptera) and Family Formicidae (Hymenoptera) respectively. This study concluded F. limnocharis main natural prey was the easily found and easily perceived insects.


2010 ◽  
Vol 339 (1-2) ◽  
pp. 447-455 ◽  
Author(s):  
Yan Zhang ◽  
Bing-Hai Du ◽  
Zhi-gang Jin ◽  
Zheng-hua Li ◽  
Hong-ning Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document