Prediction of Streamflow Regime and Annual Runoff for Ungauged Basins Using a Distributed Monthly Water Balance Model1

Author(s):  
R.D. Dan Moore ◽  
J.W. Trubilowicz ◽  
J.M Buttle
2011 ◽  
Vol 8 (1) ◽  
pp. 391-427 ◽  
Author(s):  
M. Di Prinzio ◽  
A. Castellarin ◽  
E. Toth

Abstract. Objective criteria for catchment classification are identified by the scientific community among the key research topics for improving the interpretation and representation of the spatiotemporal variability of streamflow. A promising approach to catchment classification makes use of unsupervised neural networks (Self Organising Maps, SOM's), which organise input data through non-linear techniques depending on the intrinsic similarity of the data themselves. Our study considers ~300 Italian catchments scattered nationwide, for which several descriptors of the streamflow regime and geomorphoclimatic characteristics are available. We qualitatively and quantitatively compare in the context of PUB (Prediction in Ungauged Basins) a reference classification, RC, with four alternative classifications, AC's. RC was identified by using indices of the streamflow regime as input to SOM, whereas AC's were identified on the basis of catchment descriptors that can be derived for ungauged basins. One AC directly adopts the available catchment descriptors as input to SOM. The remaining AC's are identified by applying SOM to two sets of derived variables obtained by applying Principal Component Analysis (PCA, second AC) and Canonical Correlation Analysis (CCA, third and fourth ACs) to the available catchment descriptors. First, we measure the similarity between each AC and RC. Second, we use AC's and RC to regionalize several streamflow indices and we compare AC's with RC in terms of accuracy of streamflow prediction. In particular, we perform an extensive cross-validation to quantify nationwide the accuracy of predictions in ungauged basins of mean annual runoff, mean annual flood, and flood quantiles associated with given exceedance probabilities. Results of the study show that CCA can significantly improve the effectiveness of SOM classifications for the PUB problem.


2021 ◽  
Vol 25 (2) ◽  
pp. 945-956
Author(s):  
Yuan Gao ◽  
Lili Yao ◽  
Ni-Bin Chang ◽  
Dingbao Wang

Abstract. Prediction of mean annual runoff is of great interest but still poses a challenge in ungauged basins. The present work diagnoses the prediction in mean annual runoff affected by the uncertainty in estimated distribution of soil water storage capacity. Based on a distribution function, a water balance model for estimating mean annual runoff is developed, in which the effects of climate variability and the distribution of soil water storage capacity are explicitly represented. As such, the two parameters in the model have explicit physical meanings, and relationships between the parameters and controlling factors on mean annual runoff are established. The estimated parameters from the existing data of watershed characteristics are applied to 35 watersheds. The results showed that the model could capture 88.2 % of the actual mean annual runoff on average across the study watersheds, indicating that the proposed new water balance model is promising for estimating mean annual runoff in ungauged watersheds. The underestimation of mean annual runoff is mainly caused by the underestimation of the area percentage of low soil water storage capacity due to neglecting the effect of land surface and bedrock topography. Higher spatial variability of soil water storage capacity estimated through the height above the nearest drainage (HAND) and topographic wetness index (TWI) indicated that topography plays a crucial role in determining the actual soil water storage capacity. The performance of mean annual runoff prediction in ungauged basins can be improved by employing better estimation of soil water storage capacity including the effects of soil, topography, and bedrock. It leads to better diagnosis of the data requirement for predicting mean annual runoff in ungauged basins based on a newly developed process-based model finally.


2011 ◽  
Vol 15 (6) ◽  
pp. 1921-1935 ◽  
Author(s):  
M. Di Prinzio ◽  
A. Castellarin ◽  
E. Toth

Abstract. A promising approach to catchment classification makes use of unsupervised neural networks (Self Organising Maps, SOM's), which organise input data through non-linear techniques depending on the intrinsic similarity of the data themselves. Our study considers ∼300 Italian catchments scattered nationwide, for which several descriptors of the streamflow regime and geomorphoclimatic characteristics are available. We compare a reference classification, identified by using indices of the streamflow regime as input to SOM, with four alternative classifications, which were identified on the basis of catchment descriptors that can be derived for ungauged basins. One alternative classification adopts the available catchment descriptors as input to SOM, the remaining classifications are identified by applying SOM to sets of derived variables obtained by applying Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) to the available catchment descriptors. The comparison is performed relative to a PUB problem, that is for predicting several streamflow indices in ungauged basins. We perform an extensive cross-validation to quantify nationwide the accuracy of predictions of mean annual runoff, mean annual flood, and flood quantiles associated with given exceedance probabilities. Results of the study indicate that performing PCA and, in particular, CCA on the available set of catchment descriptors before applying SOM significantly improves the effectiveness of SOM classifications by reducing the uncertainty of hydrological predictions in ungauged sites.


1997 ◽  
Vol 28 (4-5) ◽  
pp. 273-282 ◽  
Author(s):  
C-Y Xu ◽  
Sven Halldin

Within the next few decades, changes in global temperature and precipitation patterns may appear, especially at high latitudes. A simple monthly water-balance model of the NOPEX basins was developed and used for the purposes of investigating the effects on water availability of changes in climate. Eleven case study catchments were used together with a number of climate change scenarios. The effects of climate change on average annual runoff depended on the ratio of average annual runoff to average annual precipitation, with the greatest sensitivity in the catchments with lowest runoff coefficients. A 20% increase in annual precipitation resulted in an increase in annual runoff ranging from 31% to 51%. The greatest changes in monthly runoff were in winter (from December to March) whereas the smallest changes were found in summer. The time of the highest spring flow changed from April to March. An increase in temperature by 4°C greatly shortened the time of snow cover and the snow accumulation period. The maximum amount of snow during these short winters diminished by 50% for the NOPEX area even with an assumed increase of total precipitation by 20%.


2013 ◽  
Author(s):  
S.V. Harder ◽  
D.M. Amatya ◽  
T.J. Callahan ◽  
and C.C. Trettin

Sign in / Sign up

Export Citation Format

Share Document