Use of Volume Element Methods to Understand Experimental Differences in Active/Passive Transitions and Active Oxidation Rates for SiC

2013 ◽  
Vol 96 (4) ◽  
pp. 1317-1323 ◽  
Author(s):  
Y. Kubota ◽  
H. Hatta ◽  
T. Yoshinaka ◽  
Y. Kogo ◽  
T. Goto ◽  
...  

Author(s):  
E. Zeitler ◽  
M. G. R. Thomson

In the formation of an image each small volume element of the object is correlated to an areal element in the image. The structure or detail of the object is represented by changes in intensity from element to element, and this variation of intensity (contrast) is determined by the interaction of the electrons with the specimen, and by the optical processing of the information-carrying electrons. Both conventional and scanning transmission electron microscopes form images which may be considered in this way, but the mechanism of image construction is very different in the two cases. Although the electron-object interaction is the same, the optical treatment differs.



Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).



1971 ◽  
Author(s):  
D. CAWTHON ◽  
C. JOYNER, JR.


2020 ◽  
Vol 16 (4) ◽  
pp. 537-542
Author(s):  
Zhigacheva Irina ◽  
Volodkin Aleksandr ◽  
Rasulov Maksud

Background: One of the main sources of ROS in stress conditions is the mitochondria. Excessive generation of ROS leads to oxidation of thiol groups of proteins, peroxidation of membrane lipids and swelling of the mitochondria. In this regard, there is a need to search for preparationsadaptogens that increase the body's resistance to stress factors. Perhaps, antioxidants can serve as such adaptogens. This work aims at studying the effect of antioxidant; the potassium anphen in a wide range of concentrations on the functional state of 6 day etiolated pea seedlings mitochondria (Pisum sativum L). Methods: The functional state of mitochondria was studied per rates of mitochondria respiration, by the level of lipid peroxidation and study of fatty acid composition of mitochondrial membranes by chromatography technique. Results: Potassium anphen in concentrations of 10-5 - 10-8 M and 10-13-10-16 prevented the activation of LPO in the mitochondrial membranes of pea seedlings, increased the oxidation rates of NAD-dependent substrates and succinate in the respiratory chain of mitochondria that probably pointed to the anti-stress properties of the drug. Indeed, the treatment of pea seeds with the preparation in concentrations of 10-13 M prevented the inhibition of growth of seedlings in conditions of water deficiency. Conclusion: It is assumed that the dose dependence of the biological effects of potassium anphen and the manifestation of these effects in ultra-low concentrations are due to its ability in water solutions to form a hydrate containing molecular ensembles (structures).



1976 ◽  
Vol 41 (3) ◽  
pp. 770-779 ◽  
Author(s):  
M. R. Nair ◽  
S. Hilgard ◽  
J. Klinot ◽  
K. Waisser ◽  
A. Vystrčil






2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Aanchna Sharma ◽  
Yashwant Munde ◽  
Vinod Kushvaha

AbstractIn this study, Representative Volume Element based micromechanical modeling technique has been implemented to assess the mechanical properties of glass filled epoxy composites. Rod shaped glass fillers having an aspect ratio of 80 were used for preparing the epoxy composite. The three-dimensional unit cell model of representative volume element was prepared with finite element analysis tool ANSYS 19 using the periodic square and hexagonal array with an assumption that there is a perfect bonding between the filler and the epoxy matrix. Results revealed that the tensile modulus increases and Poisson’s ratio decreases with increase in the volume fraction of the filler. To study the effect of filler volume fraction, the pulse echo techniques were used to experimentally measure the tensile modulus and Poisson’s ratio for 5% to 15% volume fraction of the filler. A good agreement was found between the RVE based predicted values and the experimental results.



2021 ◽  
pp. 073168442094118
Author(s):  
Qi Wu ◽  
Hongzhou Zhai ◽  
Nobuhiro Yoshikawa ◽  
Tomotaka Ogasawara ◽  
Naoki Morita

A novel localization approach that seamlessly bridges the macro- and micro-scale models is proposed and used to model the forming-induced residual stresses within a representative volume element of a fiber reinforced composite. The approach uses a prescribed boundary that is theoretically deduced by integrating the asymptotic expansion of a composite and the equal strain transfer, thus rendering the simulation setting to be easier than conventional approaches. When the localization approach is used for the finite element analysis, the temperature and residual stresses within an ideal cubic representative volume element are precisely simulated, given a sandwiched thermoplastic composite is formed under one-side cooling condition. The simulation results, after being validated, show that the temperature gradient has an impact on the local residual stresses, especially on the in-plane normal stress transverse to the fiber, and consequently, influences the structural deformation. This newly designed localization approach demonstrates the advantages of enhanced precision and reduced computational cost owing to the fast modeling of the finely meshed representative volume element. This is beneficial for a detailed understanding of the actual residual stresses at the micro-scale.



Sign in / Sign up

Export Citation Format

Share Document