Influences of the feature extraction area of duck egg image for the identification accuracy on the unfertilized duck eggs on the hatching tray

Author(s):  
Jun Dong ◽  
Ke He ◽  
Qinming Sun ◽  
Xiuying Tang
2021 ◽  
Vol 13 (15) ◽  
pp. 2901
Author(s):  
Zhiqiang Zeng ◽  
Jinping Sun ◽  
Congan Xu ◽  
Haiyang Wang

Recently, deep learning (DL) has been successfully applied in automatic target recognition (ATR) tasks of synthetic aperture radar (SAR) images. However, limited by the lack of SAR image target datasets and the high cost of labeling, these existing DL based approaches can only accurately recognize the target in the training dataset. Therefore, high precision identification of unknown SAR targets in practical applications is one of the important capabilities that the SAR–ATR system should equip. To this end, we propose a novel DL based identification method for unknown SAR targets with joint discrimination. First of all, the feature extraction network (FEN) trained on a limited dataset is used to extract the SAR target features, and then the unknown targets are roughly identified from the known targets by computing the Kullback–Leibler divergence (KLD) of the target feature vectors. For the targets that cannot be distinguished by KLD, their feature vectors perform t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction processing to calculate the relative position angle (RPA). Finally, the known and unknown targets are finely identified based on RPA. Experimental results conducted on the MSTAR dataset demonstrate that the proposed method can achieve higher identification accuracy of unknown SAR targets than existing methods while maintaining high recognition accuracy of known targets.


Author(s):  
Musab T. S. Al-Kaltakchi ◽  
Haithem Abd Al-Raheem Taha ◽  
Mohanad Abd Shehab ◽  
Mohamed A.M. Abdullah

<p><span lang="EN-GB">In this paper, different feature extraction and feature normalization methods are investigated for speaker recognition. With a view to give a good representation of acoustic speech signals, Power Normalized Cepstral Coefficients (PNCCs) and Mel Frequency Cepstral Coefficients (MFCCs) are employed for feature extraction. Then, to mitigate the effect of linear channel, Cepstral Mean-Variance Normalization (CMVN) and feature warping are utilized. The current paper investigates Text-independent speaker identification system by using 16 coefficients from both the MFCCs and PNCCs features. Eight different speakers are selected from the GRID-Audiovisual database with two females and six males. The speakers are modeled using the coupling between the Universal Background Model and Gaussian Mixture Models (GMM-UBM) in order to get a fast scoring technique and better performance. The system shows 100% in terms of speaker identification accuracy. The results illustrated that PNCCs features have better performance compared to the MFCCs features to identify females compared to male speakers. Furthermore, feature wrapping reported better performance compared to the CMVN method. </span></p>


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5385
Author(s):  
Tianyang Zhong ◽  
Donglin Li ◽  
Jianhui Wang ◽  
Jiacan Xu ◽  
Zida An ◽  
...  

Surface electromyogram (sEMG) signals have been used in human motion intention recognition, which has significant application prospects in the fields of rehabilitation medicine and cognitive science. However, some valuable dynamic information on upper-limb motions is lost in the process of feature extraction for sEMG signals, and there exists the fact that only a small variety of rehabilitation movements can be distinguished, and the classification accuracy is easily affected. To solve these dilemmas, first, a multiscale time–frequency information fusion representation method (MTFIFR) is proposed to obtain the time–frequency features of multichannel sEMG signals. Then, this paper designs the multiple feature fusion network (MFFN), which aims at strengthening the ability of feature extraction. Finally, a deep belief network (DBN) was introduced as the classification model of the MFFN to boost the generalization performance for more types of upper-limb movements. In the experiments, 12 kinds of upper-limb rehabilitation actions were recognized utilizing four sEMG sensors. The maximum identification accuracy was 86.10% and the average classification accuracy of the proposed MFFN was 73.49%, indicating that the time–frequency representation approach combined with the MFFN is superior to the traditional machine learning and convolutional neural network.


2021 ◽  
Vol 105 ◽  
pp. 291-301
Author(s):  
Wei Wang ◽  
Cheng Sheng Sun ◽  
Jia Ning Ye

With more and more malicious traffic using TLS protocol encryption, efficient identification of TLS malicious traffic has become an increasingly important task in network security management in order to ensure communication security and privacy. Most of the traditional traffic identification methods on TLS malicious encryption only adopt the common characteristics of ordinary traffic, which results in the increase of coupling among features and then the low identification accuracy. In addition, most of the previous work related to malicious traffic identification extracted features directly from the data flow without recording the extraction process, making it difficult for subsequent traceability. Therefore, this paper implements an efficient feature extraction method with structural correlation for TLS malicious encrypted traffic. The traffic feature extraction process is logged in modules, and the index is used to establish relevant information links, so as to analyse the context and facilitate subsequent feature analysis and problem traceability. Finally, Random Forest is used to realize efficient TLS malicious traffic identification with an accuracy of up to 99.38%.


Author(s):  
Heba Ahmed Elnemr ◽  
Nourhan Mohamed Zayed ◽  
Mahmoud Abdelmoneim Fakhreldein

The feature extraction is the process to represent raw image in a reduced form to facilitate decision making such as pattern detection, classification or recognition. Finding and extracting reliable and discriminative features is always a crucial step to complete the task of image recognition and computer vision. Furthermore, as the number of application demands increase, an extended study and investigation in the feature extraction field becomes very important. The goal of this chapter is to present an intensive survey of existing literatures on feature extraction techniques over the last years. All these techniques and algorithms have their advantages and limitations. Thus, in this chapter analysis of various techniques and transformations, submitted earlier in literature, for extracting various features from images will be discussed. Additionally, future research directions in the feature extraction area are provided.


Author(s):  
Nitin Shivsharan ◽  
Sanjay Ganorkar

In recent days, study on retinal image remains a significant area for analysis. Several retinal diseases are identified by examining the differences occurring in the retina. Anyhow, the major shortcoming between these analyses was that the identification accuracy is not satisfactory. The adopted framework includes two phases namely; (i) feature extraction and (ii) classification. Initially, the input fundus image is subjected to the feature extraction process, where the features like Local Binary Pattern (LBP), Local Vector Pattern (LVP) and Local Tetra Patterns (LTrP) are extracted. These extracted features are subjected to the classification process, where the Deep Belief Network (DBN) is used as the classifier. In addition, to improve the accuracy, the activation function and hidden neurons of DBN are optimally tuned by means of the Self Improved Grey Wolf Optimization (SI-GWO). Finally, the performance of implemented work is compared and proved over the conventional models.


Author(s):  
Chesada Kaewwit ◽  
Chidchanok Lursinsap ◽  
Peraphon Sophatsathit

Modern biometric identification methods combine interdisciplinary approaches to enhance person identification and classification accuracy. One popular technique for this purpose is Brain-Computer Interface (BCI). The signal so obtained from BCI will be further processed by the Autoregressive (AR) Model for feature extraction. Many researches in the area find that for more accurate results, the signal must be cleaned before extracting any useful feature information. This study proposes Independent Component Analysis (ICA), k-NN classifier, and AR as the combined techniques for electroencephalogram (EEG) biometrics to achieve the highest personal identification and classification accuracy. However, there is a classification gap between using the combined ICA with the AR model and AR model alone. Therefore, this study takes one step further by modifying the feature extraction of AR and comparing the outcome with the proposed approaches in lieu of prior researches. The experiment based on four relevant locations shows that the combined ICA and AR can achieve higher accuracy than the modified AR. More combinations of channels and subjects are required in future research to explore the significance of channel effects and to enhance the identification accuracy.  


Author(s):  
J.P. Fallon ◽  
P.J. Gregory ◽  
C.J. Taylor

Quantitative image analysis systems have been used for several years in research and quality control applications in various fields including metallurgy and medicine. The technique has been applied as an extension of subjective microscopy to problems requiring quantitative results and which are amenable to automatic methods of interpretation.Feature extraction. In the most general sense, a feature can be defined as a portion of the image which differs in some consistent way from the background. A feature may be characterized by the density difference between itself and the background, by an edge gradient, or by the spatial frequency content (texture) within its boundaries. The task of feature extraction includes recognition of features and encoding of the associated information for quantitative analysis.Quantitative Analysis. Quantitative analysis is the determination of one or more physical measurements of each feature. These measurements may be straightforward ones such as area, length, or perimeter, or more complex stereological measurements such as convex perimeter or Feret's diameter.


2020 ◽  
Vol 63 (7) ◽  
pp. 2054-2069
Author(s):  
Brandon Merritt ◽  
Tessa Bent

Purpose The purpose of this study was to investigate how speech naturalness relates to masculinity–femininity and gender identification (accuracy and reaction time) for cisgender male and female speakers as well as transmasculine and transfeminine speakers. Method Stimuli included spontaneous speech samples from 20 speakers who are transgender (10 transmasculine and 10 transfeminine) and 20 speakers who are cisgender (10 male and 10 female). Fifty-two listeners completed three tasks: a two-alternative forced-choice gender identification task, a speech naturalness rating task, and a masculinity/femininity rating task. Results Transfeminine and transmasculine speakers were rated as significantly less natural sounding than cisgender speakers. Speakers rated as less natural took longer to identify and were identified less accurately in the gender identification task; furthermore, they were rated as less prototypically masculine/feminine. Conclusions Perceptual speech naturalness for both transfeminine and transmasculine speakers is strongly associated with gender cues in spontaneous speech. Training to align a speaker's voice with their gender identity may concurrently improve perceptual speech naturalness. Supplemental Material https://doi.org/10.23641/asha.12543158


Sign in / Sign up

Export Citation Format

Share Document