Controlling Campylobacter jejuni in vitro and in chicken using combinations of citrus‐based and trisodium phosphate formulations

2021 ◽  
Author(s):  
Luisa Solís‐Soto ◽  
Laiju Kuzhippillymyal Prabhakarankutty ◽  
Santos García ◽  
Yaraymi Ortíz‐Reyes ◽  
Norma Heredia
Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
De Xi ◽  
Lukas Hofmann ◽  
Thomas Alter ◽  
Ralf Einspanier ◽  
Stefan Bereswill ◽  
...  

Abstract Background Campylobacter jejuni (C. jejuni) infections are of increasing importance worldwide. As a typical mucosal pathogen, the interaction of C. jejuni with mucins is a prominent step in the colonisation of mucosal surfaces. Despite recent advances in understanding the interaction between bacterial pathogens and host mucins, the mechanisms of mucin glycosylation during intestinal C. jejuni infection remain largely unclear. This prompted us to identify relevant regulatory networks that are concerted by miRNAs and could play a role in the mucin modification and interaction. Results We firstly used a human intestinal in vitro model, in which we observed altered transcription of MUC2 and TFF3 upon C. jejuni NCTC 11168 infection. Using a combined approach consisting of in silico analysis together with in vitro expression analysis, we identified the conserved miRNAs miR-125a-5p and miR-615-3p associated with MUC2 and TFF3. Further pathway analyses showed that both miRNAs appear to regulate glycosyltransferases, which are related to the KEGG pathway ‘Mucin type O-glycan biosynthesis’. To validate the proposed interactions, we applied an in vivo approach utilising a well-established secondary abiotic IL-10−/− mouse model for infection with C. jejuni 81-176. In colonic tissue samples, we confirmed infection-dependent aberrant transcription of MUC2 and TFF3. Moreover, two predicted glycosyltransferases, the sialyltransferases ST3GAL1 and ST3GAL2, exhibited inversely correlated transcriptional levels compared to the expression of the identified miRNAs miR-125a-5p and miR-615-3p, respectively. In this study, we mainly focused on the interaction between miR-615-3p and ST3GAL2 and were able to demonstrate their molecular interaction using luciferase reporter assays and RNAi. Detection of ST3GAL2 in murine colonic tissue by immunofluorescence demonstrated reduced intensity after C. jejuni 81-176 infection and was thus consistent with the observations made above. Conclusions We report here for the first time the regulation of glycosyltransferases by miRNAs during murine infection with C. jejuni 81-176. Our data suggest that mucin type O-glycan biosynthesis is concerted by the interplay of miRNAs and glycosyltransferases, which could determine the shape of intestinal glycosylated proteins during infection.


2006 ◽  
Vol 74 (1) ◽  
pp. 769-772 ◽  
Author(s):  
Scarlett Goon ◽  
Cheryl P. Ewing ◽  
Maria Lorenzo ◽  
Dawn Pattarini ◽  
Gary Majam ◽  
...  

ABSTRACT A Campylobacter jejuni 81-176 mutant in Cj0977 was fully motile but reduced >3 logs compared to the parent in invasion of intestinal epithelial cells in vitro. The mutant was also attenuated in a ferret diarrheal disease model. Expression of Cj0977 protein was dependent on a minimal flagella structure.


2002 ◽  
Vol 70 (2) ◽  
pp. 787-793 ◽  
Author(s):  
Patricia Guerry ◽  
Christine M. Szymanski ◽  
Martina M. Prendergast ◽  
Thomas E. Hickey ◽  
Cheryl P. Ewing ◽  
...  

ABSTRACT The outer cores of the lipooligosaccharides (LOS) of many strains of Campylobacter jejuni mimic human gangliosides in structure. A population of cells of C. jejuni strain 81-176 produced a mixture of LOS cores which consisted primarily of structures mimicking GM2 and GM3 gangliosides, with minor amounts of structures mimicking GD1b and GD2. Genetic analyses of genes involved in the biosynthesis of the outer core of C. jejuni 81-176 revealed the presence of a homopolymeric tract of G residues within a gene encoding CgtA, an N-acetylgalactosaminyltransferase. Variation in the number of G residues within cgtA affected the length of the open reading frame, and these changes in cgtA corresponded to a change in LOS structure from GM2 to GM3 ganglioside mimicry. Site-specific mutation of cgtA in 81-176 resulted in a major LOS core structure that lacked GalNAc and resembled GM3 ganglioside. Compared to wild-type 81-176, the cgtA mutant showed a significant increase in invasion of INT407 cells. In comparison, a site-specific mutation of the neuC1 gene resulted in the loss of sialic acid in the LOS core and reduced resistance to normal human serum but had no affect on invasion of INT407 cells.


2021 ◽  
Author(s):  
Victoria L. Jeter ◽  
Jorge C. Escalante-Semerena

Posttranslational modifications are mechanisms for rapid control of protein function used by cells from all domains of life. Acetylation of the epsilon amino group ( N ε ) of an active-site lysine of the AMP-forming acetyl-CoA synthetase (Acs) enzyme is the paradigm for the posttranslational control of the activity of metabolic enzymes. In bacteria, the alluded active-site lysine of Acs enzymes can be modified by a number of different GCN5-type N -acetyltransferases (GNATs). Acs activity is lost as a result of acetylation, and restored by deacetylation. Using a heterologous host, we show that Campylobacter jejuni NCTC11168 synthesizes enzymes that control Acs function by reversible lysine acetylation (RLA). This work validates the function of gene products encoded by the cj1537c , cj1715, and cj1050c loci, namely the AMP-forming acetate:CoA ligase ( Cj Acs), a type IV GCN5-type lysine acetyltransferase (GNAT, hereafter Cj LatA), and a NAD + -dependent (class III) sirtuin deacylase ( Cj CobB), respectively. To our knowledge, these are the first in vivo and in vitro data on C. jejuni enzymes that control the activity of Cj Acs. IMPORTANCE This work is important because it provides the experimental evidence needed to support the assignment of function to three key enzymes, two of which control the reversible posttranslational modification of an active-site lysyl residue of the central metabolic enzyme acetyl-CoA synthetase ( Cj Acs). We can now generate Campylobacter jejuni mutant strains defective in these functions, so we can establish the conditions in which this mode of regulation of Cj Acs is triggered in this bacterium. Such knowledge may provide new therapeutic strategies for the control of this pathogen.


2008 ◽  
Vol 76 (8) ◽  
pp. 3390-3398 ◽  
Author(s):  
Jennifer M. Lamb-Rosteski ◽  
Lisa D. Kalischuk ◽  
G. Douglas Inglis ◽  
Andre G. Buret

ABSTRACT Campylobacter jejuni is a leading cause of acute bacterial enteritis in humans. Poultry serves as a major reservoir of C. jejuni and is thought to act as a principal vehicle of transmission to humans. Epidermal growth factor (EGF) is a small amino acid peptide that exerts a broad range of activities on the intestinal epithelium. The aims of this study were to determine the effect of EGF on C. jejuni intestinal colonization in newly hatched chicks and to characterize its effects on C. jejuni-induced intestinal epithelial barrier disruption. White Leghorn chicks were treated with EGF daily, starting 1 day prior to C. jejuni infection, and were compared to control and C. jejuni-infected, EGF-treated chicks. Infected chicks shed C. jejuni in their feces throughout the study period. C. jejuni colonized the small intestine and cecum, disseminated to extraintestinal organs, and caused jejunal villus atrophy. EGF reduced jejunal colonization and dissemination of C. jejuni to the liver and spleen. In EGF-treated C. jejuni-infected chicks, villus height was not significantly different from that in untreated C. jejuni-infected chicks or controls. In vitro, C. jejuni attached to and invaded intestinal epithelial cells, disrupted tight junctional claudin-4, and increased transepithelial permeability. C. jejuni also promoted the translocation of noninvasive Escherichia coli C25. These C. jejuni-induced epithelial abnormalities were abolished by pretreatment with EGF, and the effect was dependent upon activation of the EGF receptor. These findings highlight EGF's ability to alter colonization of C. jejuni in the intestinal tract and to protect against pathogen-induced barrier defects.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81069 ◽  
Author(s):  
A. Malik Tareen ◽  
Carsten G. K. Lüder ◽  
Andreas E. Zautner ◽  
Uwe Groß ◽  
Markus M. Heimesaat ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Hongqiang Lou ◽  
Xusheng Li ◽  
Xiusheng Sheng ◽  
Shuiqin Fang ◽  
Shaoye Wan ◽  
...  

Campylobacter jejuni (C. jejuni) is one of the major pathogens contributing to the enteritis in humans. Infection can lead to numerous complications, including but not limited to Guillain-Barre syndrome, reactive arthritis, and Reiter’s syndrome. Over the past two decades, joint efforts have been made toward developing a proper strategy of limiting the transmission of C. jejuni to humans. Nevertheless, except for biosecurity measures, no available vaccine has been developed so far. Judging from the research findings, Omp18, AhpC outer membrane protein, and FlgH flagellin subunits of C. jejuni could be adopted as surface protein antigens of C. jejuni for screening dominant epitope thanks to their strong antigenicity, expression of varying strains, and conservative sequence. In this study, bioinformatics technology was adopted to analyze the T-B antigenic epitopes of Omp18, AhpC, and FlgH in C. jejuni strain NCTC11168. Both ELISA and Western Blot methods were adopted to screen the dominant T-B combined epitope. GGS (GGCGGTAGC) sequence was adopted to connect the dominant T-B combined epitope peptides and to construct the prokaryotic expression system of tandem repeats of antigenic epitope peptides. The mouse infection model was adopted to assess the immunoprotective effect imposed by the trivalent T-B combined with antigen epitope peptide based on Omp18/AhpC/FlgH. In this study, a tandem epitope AhpC-2/Omp18-1/FlgH-1 was developed, which was composed of three epitopes and could effectively enhance the stability and antigenicity of the epitope while preserving its structure. The immunization of BALB/c mice with a tandem epitope could induce protective immunity accompanied by the generation of IgG2a antibody response through the in vitro synthesis of IFN-γ cytokines. Judging from the results of immune protection experiments, the colonization of C. jejuni declined to a significant extent, and it was expected that AhpC-2/Omp18-1/FlgH-1 could be adopted as a candidate antigen for genetic engineering vaccine of C. jejuni MAP.


2006 ◽  
Vol 189 (5) ◽  
pp. 1856-1865 ◽  
Author(s):  
Sami S. A. Ashgar ◽  
Neil J. Oldfield ◽  
Karl G. Wooldridge ◽  
Michael A. Jones ◽  
Greg J. Irving ◽  
...  

ABSTRACT Two putative autotransporter proteins, CapA and CapB, were identified in silico from the genome sequence of Campylobacter jejuni NCTC11168. The genes encoding each protein contain homopolymeric tracts, suggestive of phase variation mediated by a slipped-strand mispairing mechanism; in each case the gene sequence contained frameshifts at these positions. The C-terminal two-thirds of the two genes, as well as a portion of the predicted signal peptides, were identical; the remaining N-terminal portions were gene specific. Both genes were cloned and expressed; recombinant polypeptides were purified and used to raise rabbit polyclonal monospecific antisera. Using immunoblotting, expression of the ca.116-kDa CapA protein was demonstrated for in vitro-grown cells of strain NCTC11168, for 4 out of 11 recent human fecal isolates, and for 2 out of 8 sequence-typed strains examined. Expression of CapB was not detected for any of the strains tested. Surface localization of CapA was demonstrated by subcellular fractionation and immunogold electron microscopy. Export of CapA was inhibited by globomycin, reinforcing the bioinformatic prediction that the protein is a lipoprotein. A capA insertion mutant had a significantly reduced capacity for association with and invasion of Caco-2 cells and failed to colonize and persist in chickens, indicating that CapA plays a role in host association and colonization by Campylobacter. In view of this demonstrated role, we propose that CapA stands for Campylobacter adhesion protein A.


Sign in / Sign up

Export Citation Format

Share Document