scholarly journals Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia ) on in vitro ruminal methane production and fermentation characteristics

2015 ◽  
Vol 100 (2) ◽  
pp. 348-360 ◽  
Author(s):  
B. Hatew ◽  
E. Stringano ◽  
I. Mueller-Harvey ◽  
W. H. Hendriks ◽  
C. Hayot Carbonero ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2123 ◽  
Author(s):  
Harley Naumann ◽  
Rebecka Sepela ◽  
Aira Rezaire ◽  
Sonia Masih ◽  
Wayne Zeller ◽  
...  

Previous studies showed that a series of purified condensed tannins (CTs) from warm-season perennial legumes exhibited high variability in their modulation of methane production during in vitro rumen digestion. The molecular weight differences between these CTs did not provide correlation with either the in vitro CH4 production or the ability to precipitate bovine serum albumin. In an effort to delineate other structure-activity relationships from these methane abatement experiments, the structures of purified CTs from these legumes were assessed with a combination of methanolysis, quantitative thiolysis, 1H-13C HSQC NMR spectroscopy and ultrahigh-resolution MALDI-TOF MS. The composition of these CTs is very diverse: procyanidin/prodelphinidin (PC/PD) ratios ranged from 98/2 to 2/98; cis/trans ratios ranged from 98/2 to 34/66; mean degrees of polymerization ranged from 6 to 39; and % galloylation ranged from 0 to 75%. No strong correlation was observed between methane production and the protein precipitation capabilities of the CT towards three different proteins (BSA, lysozyme, and alfalfa leaf protein) at ruminal pH. However, a strong non-linear correlation was observed for the inhibition of methane production versus the antioxidant activity in plant sample containing typical PC- and PD-type CTs. The modulation of methane production could not be correlated to the CT structure (PC/PD or cis/trans ratios and extent of galloylation). The most active plant in methane abatement was Acacia angustissima, which contained CT, presenting an unusual challenge as it was resistant to standard thiolytic degradation conditions and exhibited an atypical set of cross-peak signals in the 2D NMR. The MALDI analysis supported a 5-deoxy flavan-3-ol-based structure for the CT from this plant.


2015 ◽  
Vol 205 ◽  
pp. 1-9 ◽  
Author(s):  
Ives C.S. Bueno ◽  
Roberta A. Brandi ◽  
Raul Franzolin ◽  
Gabriela Benetel ◽  
Gisele M. Fagundes ◽  
...  

1999 ◽  
Vol 79 (2) ◽  
pp. 203-212 ◽  
Author(s):  
L. R. McMahon ◽  
W. Majak ◽  
T. A. McAllister ◽  
J. W. Hall ◽  
G. A. Jones ◽  
...  

The effects of sainfoin (Onobrychis viciifolia) on digestion of alfalfa (Medicago sativa) were investigated in vitro and in vivo. Fresh alfalfa and sainfoin were incubated in an artificial rumen (Rusitec) in ratios of 100:0, 75:25, 50:50, 25:75 and 0:100 (as-fed). Disappearances of dry matter and N from sainfoin were 77 and 65% of those from alfalfa, respectively. Protease and endoglucanase activities, NH3-N and methane production declined (P < 0.05) as sainfoin increased. Bacterial numbers and microbial outputs were unchanged (P > 0.05), but cells incorporated more 15NH3N as sainfoin in the diet increased. Chopped leaves (100:0, 95:5 and 90:10 alfalfa:sainfoin) were incubated for 48 h with diluted ruminal fluid containing 0 or 50 mg polyethylene glycol, which binds tannins. Gas and volatile fatty acid productions were similar (P > 0.05) across treatments, but including 10% sainfoin (without polyethylene glycol) reduced (P < 0.05) NH3 concentrations between 8 and 24 h. Sainfoin tannins reduced degradation of forage protein without affecting the digestibility of the nonprotein fraction. Alfalfa herbage was fed alone or with early- to full-bloom sainfoin herbage (at 10 or 20% of ad libitum alfalfa dry matter intake) or with sainfoin hay or pellets, to eight Jersey steers in crossover trials conducted over 4 yr. Including sainfoin in the diet reduced (P < 0.001) the incidence of bloat by 45 to 93% in 3 of 4 yr, irrespective of the form in which it was supplied. Co-feeding sainfoin can markedly reduce the incidence of bloat in ruminants consuming fresh alfalfa. Key words: Alfalfa, sainfoin, bloat, condensed tannins


2018 ◽  
Vol 96 (suppl_3) ◽  
pp. 422-422 ◽  
Author(s):  
Q Huang ◽  
K Peng ◽  
A Iwaasa ◽  
M Schellenberg ◽  
T McAllister ◽  
...  

2013 ◽  
Vol 50 ◽  
pp. 154-162 ◽  
Author(s):  
Harley D. Naumann ◽  
Luis O. Tedeschi ◽  
James P. Muir ◽  
Barry D. Lambert ◽  
Merwyn M. Kothmann

Author(s):  
M.H. Tavendale ◽  
L.P. Meagher ◽  
Z.A. Park-Ng ◽  
G.C. Waghorn ◽  
G.T. Attwood

A series of in vitro incubations with kikuyu grass (Pennisetum clandestinum), lucerne and six legumes containing condensed tannins (CT) were undertaken to evaluate this technique against in vivo trials in New Zealand, measuring methane emissions. Published trials have demonstrated a reduction in methane emissions associated with CT and in one instance from kikuyu. The incubations used fresh minced forage (equivalent to 0.5 g dry matter (DM)) and were carried out in 50 ml sealed bottles containing buffer and rumen inoculum. Gas was sampled through a septum to monitor volume and composition throughout the 24h incubation. Incubation for 24 h resulted in 2.4-6.6 % conversion of DM to methane, and suggested CT concentrations below about 8% of the DM can reduce methane production without inhibiting fermentation rate. Higher concentrations of CT (> 8%) were associated with a lower rate of digestion. In common with in vivo trials, CT concentration in forage DM was inversely related to methane (adjusted R2 = 0.49; P = 0.01) and volatile fatty acid (adjusted R2=0.86; P


2019 ◽  
Vol 59 (12) ◽  
pp. 2154 ◽  
Author(s):  
A. Petlum ◽  
P. Paengkoum ◽  
J. B. Liang ◽  
K. Vasupen ◽  
S. Paengkoum

The concentration and molecular weights (MW) of condensed tannins (CT) of three locally available tropical plant species leaves which have potential to be used as ruminant feed, and their effects on in vitro gas, including methane, production were investigated. Leaves of three plant species, namely, leucaena (Leucaena leucocephala), cassava (Manihot esculenta, Cranzt), and Siamese neem (Azadirachta indica A.Juss. var. Siamensis Valeton) were used in the present study. CT contents ranged from 1.2% in the leucaena to 5.0% in Siamese neem. The weight-average molecular weights (Mw) of the purified CTs, determined using gel-permeation chromatography, were 3222, 3409 and 3612 Da for leucaena, cassava and Siamese neem respectively. The above values were within the range reported for CTs of various tropical plant species. We know of no published data on MW of CTs from leaves of cassava and Siamese neem and, thus, this research, for the first time, reported the MWs of the above two plant materials. Subsequently, two CT extracts with differing MWs, such as CTs extracted from leaves of Siamese neem and leaves of leucaena, were selected as the representative of high and low MWs of CT respectively, and used for investigation of the effect of the MW of CT on in vitro gas production and fermentation parameters. Supplementation of CTs of a higher MW extracted from leaves of Siamese neem (at 2–6 mg/100 mg DM) significantly inhibited in vitro total gas and methane production, while supplementation of CTs with a lower MW extracted from leaves of leucaena had no effect, except for total gas production at the highest level (6 mg/100 mg DM) of supplementation. Similarly, CT from Siamese neem leaves had a stronger inhibitory effect (P &lt; 0.001) on in vitro volatile fatty acid, acetic acid and butyric acid production. The above results indicated that concentrations and the MW of CT varied among the plant species; in addition, the efficacy of CTs to inhibit ruminal CH4 emission are influenced by their MW.


2011 ◽  
Vol 169 (3-4) ◽  
pp. 185-193 ◽  
Author(s):  
H.Y. Tan ◽  
C.C. Sieo ◽  
N. Abdullah ◽  
J.B. Liang ◽  
X.D. Huang ◽  
...  

Author(s):  
Khaoula Khelalfa ◽  
Rabah Arhab ◽  
Antonio Ignacio Martín-García ◽  
Nabila Zaabat ◽  
Alejandro Belanche

Condensed tannins are polyphenolic compounds which can exert beneficial effects in ruminants. They have the ability to bind proteins and decrease their degradation. They have also been reported to reduce methanogenesis and improve ruminants performances. The present work aimed to study the effect of purified condensed tannins from Acacia horrida extract on fermentation parameters, gas and methane production. In this context, seven substrates were selected: four Acacia species (Acacia pycnantha, Acacia dealbata, Acacia horrida and Acacia cyanophylla) and three plant by-products (date palm leaves, grenade peel and artichoke stems). Biological activity of tannins was evaluated by the incubation of the substrates in vitro with Polyethylene glycol (PEG). Tannins decreased concentration of all fermentation parameters (gas (p < 0.0001), methane (CH4) (p= 0.0983), ammonia (N-NH3) (p= 0.0382), Volatile Fatty Acids (VFA) (p= 0.0009), acetate (p <0.0001), propionate (p= 0.1024), butyrate (p= 0.0373), isobutyrate (p= 0.0046), valerate (p < 0.0001), isovalerate (p= 0.0032)). Substrates were also characterized by their content in main nutrients (dry matter (DM), organic matter (OM), ash, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) ,acid detergent lignin (ADL)) and in secondary metabolites (total phenols (TP), total tannins (TT) and condensed tannins (CT) ). All substrates presented high CP content except by-products (> 100 g/kg DM) and moderate cell-wall components. CT content was comprised between 120.5 and 680.4 g/kg DM in plants and between 23.1 and 170.4 g/kg DM in plant by-products. A. horrida presented the highest biological activity. Thus, their CT were extracted and purified on a sephadex LH-20 column. Purified tannins from A. horrida were incubated with two different forages alfalfa hay and barley straw at three different concentrations: 50, 100, 150 mg/g DM. Results showed that purified tannins from A. horrida had no effect on fermentation parameters (P > 0.05). The effects of A. horrida tannins may be strongly linked to their structure and their molecular weight more than to their concentration. For this reason, it is interesting that this work may be completed by physical characterization of these tannins.


Sign in / Sign up

Export Citation Format

Share Document