scholarly journals Culture and Health: Recent Developments and Future Directions 1

Author(s):  
Yuri Miyamoto ◽  
Carol D. Ryff
2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


Author(s):  
Sophie Mützel ◽  
Ronald Breiger

This chapter focuses on the general principle of duality, which was originally introduced by Simmel as the intersection of social circles. In a seminal article, Breiger formalized Simmel’s idea, showing how two-mode types of network data can be transformed into one-mode networks. This formal translation proved to be fundamental for social network analysis, which no longer needed data on who interacted with whom but could work with other types of data. In turn, it also proved fundamental for the analysis of how the social is structured in general, as many relations are dual (e.g. persons and groups, authors and articles, organizations and practices), and are thus susceptible to an analysis according to duality principles. The chapter locates the concept of duality within past and present sociology. It also discusses the use of duality in the analysis of culture as well as in affiliation networks. It closes with recent developments and future directions.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 185
Author(s):  
Adrian S. Monthony ◽  
Serena R. Page ◽  
Mohsen Hesami ◽  
Andrew Maxwell P. Jones

The recent legalization of Cannabis sativa L. in many regions has revealed a need for effective propagation and biotechnologies for the species. Micropropagation affords researchers and producers methods to rapidly propagate insect-/disease-/virus-free clonal plants and store germplasm and forms the basis for other biotechnologies. Despite this need, research in the area is limited due to the long history of prohibitions and restrictions. Existing literature has multiple limitations: many publications use hemp as a proxy for drug-type Cannabis when it is well established that there is significant genotype specificity; studies using drug-type cultivars are predominantly optimized using a single cultivar; most protocols have not been replicated by independent groups, and some attempts demonstrate a lack of reproducibility across genotypes. Due to culture decline and other problems, the multiplication phase of micropropagation (Stage 2) has not been fully developed in many reports. This review will provide a brief background on the history and botany of Cannabis as well as a comprehensive and critical summary of Cannabis tissue culture. Special attention will be paid to current challenges faced by researchers, the limitations of existing Cannabis micropropagation studies, and recent developments and future directions of Cannabis tissue culture technologies.


2021 ◽  
Vol 11 (4) ◽  
pp. 1627
Author(s):  
Yanbin Li ◽  
Gang Lei ◽  
Gerd Bramerdorfer ◽  
Sheng Peng ◽  
Xiaodong Sun ◽  
...  

This paper reviews the recent developments of design optimization methods for electromagnetic devices, with a focus on machine learning methods. First, the recent advances in multi-objective, multidisciplinary, multilevel, topology, fuzzy, and robust design optimization of electromagnetic devices are overviewed. Second, a review is presented to the performance prediction and design optimization of electromagnetic devices based on the machine learning algorithms, including artificial neural network, support vector machine, extreme learning machine, random forest, and deep learning. Last, to meet modern requirements of high manufacturing/production quality and lifetime reliability, several promising topics, including the application of cloud services and digital twin, are discussed as future directions for design optimization of electromagnetic devices.


2008 ◽  
Vol 18 (04) ◽  
pp. 913-922 ◽  
Author(s):  
SIDDHARTH RAJAN ◽  
UMESH K. MISHRA ◽  
TOMÁS PALACIOS

This paper provides an overview of recent work and future directions in Gallium Nitride transistor research. We discuss the present status of Ga -polar AlGaN / GaN HEMTs and the innovations that have led to record RF power performance. We describe the development of N -polar AlGaN / GaN HEMTs with microwave power performance comparable with state-of-art Ga -polar AlGaN / GaN HEMTs. Finally we will discuss how GaN -based field effect transistors could be promising for a less obvious application: low-power high-speed digital circuits.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 232
Author(s):  
Janneth Chicaiza ◽  
Priscila Valdiviezo-Diaz

In recent years, the use of recommender systems has become popular on the web. To improve recommendation performance, usage, and scalability, the research has evolved by producing several generations of recommender systems. There is much literature about it, although most proposals focus on traditional methods’ theories and applications. Recently, knowledge graph-based recommendations have attracted attention in academia and the industry because they can alleviate information sparsity and performance problems. We found only two studies that analyze the recommendation system’s role over graphs, but they focus on specific recommendation methods. This survey attempts to cover a broader analysis from a set of selected papers. In summary, the contributions of this paper are as follows: (1) we explore traditional and more recent developments of filtering methods for a recommender system, (2) we identify and analyze proposals related to knowledge graph-based recommender systems, (3) we present the most relevant contributions using an application domain, and (4) we outline future directions of research in the domain of recommender systems. As the main survey result, we found that the use of knowledge graphs for recommendations is an efficient way to leverage and connect a user’s and an item’s knowledge, thus providing more precise results for users.


2018 ◽  
Vol 16 (6) ◽  
pp. 746-753 ◽  
Author(s):  
Paige V. Hinton ◽  
Susan M. Rackard ◽  
Oran D. Kennedy

Sign in / Sign up

Export Citation Format

Share Document