Masked hypodiploidy in anaplastic meningiomas by duplication of the original clone found in atypical meningiomas: Illustration of the evolution of genetic alterations

2014 ◽  
pp. n/a-n/a
Author(s):  
Erin E. Ely ◽  
Miguel A. Guzman ◽  
Laura S. Calvey ◽  
Jacqueline R. Batanian
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 903
Author(s):  
Valeria Barresi ◽  
Michele Simbolo ◽  
Adele Fioravanzo ◽  
Maria Piredda ◽  
Maria Caffo ◽  
...  

The use of adjuvant therapy is controversial in atypical meningiomas with gross total resection. Predictors of recurrence risk could be useful in selecting patients for additional treatments. The aim of this study was to investigate whether molecular features are associated with recurrence risk of atypical meningiomas. According to WHO classification, the diagnosis of atypical meningioma was based on the presence of one major criteria (mitotic activity, brain invasion) or three or more minor criteria. The molecular profile of 22 cases (eight mitotically active, eight brain-invasive, and six with minor criteria) was assessed exploring the mutational status and copy number variation of 409 genes using next generation sequencing. Of the 22 patients with a median follow up of 53.5 months, 13 had recurrence of disease within 68 months. NF2 mutation was the only recurrent alteration (11/22) and was unrelated to clinical-pathological features. Recurring meningiomas featured a significantly higher proportion of copy number losses than non-recurring ones (p = 0.027). Chromosome 18q heterozygous loss or CDKN2A/B homozygous deletion was significantly associated with shorter recurrence-free survival (p = 0.008; hazard ratio: 5.3). Atypical meningiomas could be tested routinely for these genetic alterations to identify cases for adjuvant treatment.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2015 ◽  
Vol 54 (03) ◽  
pp. 94-100 ◽  
Author(s):  
P. B. Musholt ◽  
T. J. Musholt

SummaryAim: Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18–65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Methods: Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Results: Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Conclusion: Molecular genetic analysis of FNABs is increasingly performed in Germany. Standardization, quality controls, and validation of various methods need to be implemented in the near future to be able to compare the results. With increasing knowledge about the impact of genetic alterations on the prognosis of thyroid carcinomas, recommendations have to be defined that may lead to individually optimized treatment strategies.


2020 ◽  
Vol 132 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
Bryan D. Choi ◽  
Daniel K. Lee ◽  
Jimmy C. Yang ◽  
Caroline M. Ayinon ◽  
Christine K. Lee ◽  
...  

OBJECTIVEIntraoperative seizures during craniotomy with functional mapping is a common complication that impedes optimal tumor resection and results in significant morbidity. The relationship between genetic mutations in gliomas and the incidence of intraoperative seizures has not been well characterized. Here, the authors performed a retrospective study of patients treated at their institution over the last 12 years to determine whether molecular data can be used to predict the incidence of this complication.METHODSThe authors queried their institutional database for patients with brain tumors who underwent resection with intraoperative functional mapping between 2005 and 2017. Basic clinicopathological characteristics, including the status of the following genes, were recorded: IDH1/2, PIK3CA, BRAF, KRAS, AKT1, EGFR, PDGFRA, MET, MGMT, and 1p/19q. Relationships between gene alterations and intraoperative seizures were evaluated using chi-square and two-sample t-test univariate analysis. When considering multiple predictive factors, a logistic multivariate approach was taken.RESULTSOverall, 416 patients met criteria for inclusion; of these patients, 98 (24%) experienced an intraoperative seizure. Patients with a history of preoperative seizure and those treated with antiepileptic drugs prior to surgery were less likely to have intraoperative seizures (history: OR 0.61 [95% CI 0.38–0.96], chi-square = 4.65, p = 0.03; AED load: OR 0.46 [95% CI 0.26–0.80], chi-square = 7.64, p = 0.01). In a univariate analysis of genetic markers, amplification of genes encoding receptor tyrosine kinases (RTKs) was specifically identified as a positive predictor of seizures (OR 5.47 [95% CI 1.22–24.47], chi-square = 5.98, p = 0.01). In multivariate analyses considering RTK status, AED use, and either 2007 WHO tumor grade or modern 2016 WHO tumor groups, the authors found that amplification of the RTK proto-oncogene, MET, was most predictive of intraoperative seizure (p < 0.05).CONCLUSIONSThis study describes a previously unreported association between genetic alterations in RTKs and the occurrence of intraoperative seizures during glioma resection with functional mapping. Future models estimating intraoperative seizure risk may be enhanced by inclusion of genetic criteria.


2017 ◽  
Vol 63 (4) ◽  
pp. 545-556
Author(s):  
Natalya Oskina ◽  
Aleksandr Shcherbakov ◽  
Maksim Filipenko ◽  
Nikolay Kushlinskiy ◽  
L. Ovchinnikova

Currently it is established that cancer is a genetic disease and that somatic mutations are the initiators of the carcinogenic process. The PI3K/AKT/mTOR pathway is an important intracellular signaling pathway regulating the cell growth and metabolic activities. Aberrant activation of the PI3K pathway is commonly observed in many different cancers. In this review we analyze the genetic alterations of PI3K pathway in a variety of human malignancies and discuss their possible implications for diagnosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document