Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance

2016 ◽  
Vol 27 (3) ◽  
pp. 309-317 ◽  
Author(s):  
A. H. Y. Astokorki ◽  
A. R. Mauger
Author(s):  
S. C. Broome ◽  
A. J. Braakhuis ◽  
C. J. Mitchell ◽  
T. L. Merry

Abstract Background Exercise increases skeletal muscle reactive oxygen species (ROS) production, which may contribute to the onset of muscular fatigue and impair athletic performance. Mitochondria-targeted antioxidants such as MitoQ, which contains a ubiquinone moiety and is targeted to mitochondria through the addition of a lipophilic triphenylphosphonium cation, are becoming popular amongst active individuals as they are designed to accumulate within mitochondria and may provide targeted protection against exercise-induced oxidative stress. However, the effect of MitoQ supplementation on cycling performance is currently unknown. Here, we investigate whether MitoQ supplementation can improve cycling performance measured as time to complete an 8 km time trial. Method In a randomized, double-blind, placebo-controlled crossover study, 19 middle-aged (age: 44 ± 4 years) recreationally trained (VO2peak: 58.5 ± 6.2 ml·kg− 1·min− 1, distance cycled per week during 6 months prior to study enrollment: 158.3 ± 58.4 km) male cyclists completed 45 min cycling at 70% VO2peak followed by an 8 km time trial after 28 days of supplementation with MitoQ (20 mg·day− 1) and a placebo. Free F2-isoprostanes were measured in plasma samples collected at rest, after 45 min cycling at 70% VO2peak and after completion of the time trial. Respiratory gases and measures of rating of perceived exertion (RPE) were also collected. Results Mean completion time for the time trial was 1.3% faster with MitoQ (12.91 ± 0.94 min) compared to placebo (13.09 ± 0.95 min, p = 0.04, 95% CI [0.05, 2.64], d = 0.2). There was no difference in RPE during the time trial between conditions (p = 0.82) despite there being a 4.4% increase in average power output during the time trial following MitoQ supplementation compared to placebo (placebo; 270 ± 51 W, MitoQ; 280 ± 53 W, p = 0.04, 95% CI [0.49, 8.22], d = 0.2). Plasma F2-isoprostanes were lower on completion of the time trial following MitoQ supplementation (35.89 ± 13.6 pg·ml− 1) compared to placebo (44.7 ± 16.9 pg·ml− 1p = 0.03). Conclusion These data suggest that MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.


2007 ◽  
Vol 17 (4) ◽  
pp. 315-327 ◽  
Author(s):  
Ben Desbrow ◽  
Clare Minahan ◽  
Michael Leveritt

This study investigated whether a change in beverage favor during endurance cycling improves subsequent performance. Eight trained male athletes (age 24.3 ± 3.9 y, weight 74.7 ± 6.0 kg, peak O2 uptake [VO2peak] 65.4 ± 5.4 mL·kg−1·min−1; mean ± SD) undertook 3 trials, with training and diet being controlled. Trials consisted of 120 min of steady-state (SS) cycling at ~70% VO2peak, immediately followed by a 7-kJ/kg time trial (TT). During exercise subjects were provided with fluids every 20 min. After 80 min of SS cycling subjects either continued drinking the same-favor sports drink or changed to an alternate favor—either an alternate-favor sports drink (AFSD) or cola. All beverages were carbohydrate and volume matched. Changing drink favor caused no significant change in TT time (sports drink 27:16 ± 03:12, AFSD 27:06 ± 03:16, cola 27:03 ± 02:42; min: s). The various favors produced no treatment effects on heart rate, blood glucose, or rating of perceived exertion throughout the SS exercise protocol. The influence of other taste variables such as palatability, bitterness, or timing of favor change on endurance-exercise performance requires more rigorous investigation.


2000 ◽  
Vol 10 (4) ◽  
pp. 444-451 ◽  
Author(s):  
L. Christopher Eschbach ◽  
Michael J. Webster ◽  
Joseph C. Boyd ◽  
Patrick D. McArthur ◽  
Tammy K. Evetovich

It has been suggested that Eleutherococcus senticosus (ES). also known as Siberian ginseng or ciwuija. increases fat utilization in humans. The purpose of this study was to examine the physiological responses to supplementation with ES in endurance cyclists. Using arandomized. double-blind crossover design. 9 highly-trained men (28 ± 2 years. V̇O2max 57.3±2.0 ml · kg−1 · min−1) cycled for 120 min at 60% V̇O2max followed by a simulated 10-km lime trial. Diet was controlled, and ES (1,200 mg · day−1) or a placebo (P) were administered for 7 days prior to each of the two trials. Oxygen consumption, respiratory exchange ratio, and heart rate were recorded every 30 min, and rating of perceived exertion. plasma [lactate], and plasma [glucose j were recorded every 20 min during the 120 min of steady state cycling. There were no significant differences (p > .05) between the ES and P groups at any steady-state time interval or during the cycling time trial (ES = 18.10 ± 0.42, P = 17.83 ± 0.47 min). In contrast with previous reports, the results of this study suggest that ES supplementation does not alter steady-state substrate utilization or 10-km cycling performance time.


2020 ◽  
Author(s):  
Sophie Broome ◽  
Andrea Braakhuis ◽  
Cameron Mitchell ◽  
Troy Merry

Abstract BackgroundExercise increases skeletal muscle ROS production, which may contribute to the onset of muscular fatigue and impair athletic performance. Mitochondria-targeted antioxidants such as MitoQ are becoming popular amongst active individuals as they are designed to accumulate within mitochondria and may provide targeted protection against exercise-induced oxidative stress. However, the effect of MitoQ supplementation on cycling performance is currently unknown. Here we investigate whether MitoQ supplementation can improve cycling performance measured as time to complete an 8 km time trial.MethodIn a randomised, double-blind, placebo-controlled crossover study, 19 middle-aged (age: 44 ± 4 years) recreationally trained (VO2peak: 58.5 ± 6.2 ml·kg·min− 1, distance cycled per week during six months prior to study enrollment: 158.3 ± 58.4 km) male cyclists completed 45 min cycling at 70% VO2peak followed by an 8 km time trial after 28 days of supplementation with MitoQ (20 mg/day) and a placebo. Free F2-isoprostanes were measured in plasma samples collected at rest, after 45 min cycling at 70% VO2peak and after completion of the time trial. Respiratory gases and measures of rate of perceived exertion (RPE) were also collected.ResultsMean completion time for the time trial was 1.3% faster with MitoQ (12.91 ± 0.94 min) compared to placebo (13.09 ± 0.95 min, P = 0.04 95% CI [0.05, 2.64], d = 0.2). There was no difference in RPE during the time trial between conditions (P = 0.82) despite average power output during the time trial being higher following MitoQ supplementation (280 ± 53 W) compared to placebo (270 ± 51 W, P = 0.04). Plasma F2-isoprostanes were lower on completion of the time trial following MitoQ supplementation (35.89 ± 13.6 pg/ml) compared to placebo (44.7 ± 16.9 pg/ml P = 0.03).ConclusionThese data suggest that MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.Trial registrationThis study was registered with the Australia New Zealand Clinical Trial Registry (ACTRN12619000451101) on 19th March 2019.


Author(s):  
Paul W. Macdermid ◽  
Stephen Stannard ◽  
Dean Rankin ◽  
David Shillington

Purpose:To determine beneficial effects of short-term galactose (GAL) supplementation over a 50:50 glucose–maltodextrin (GLUC) equivalent on self-paced endurance cycling performance.Methods:On 2 separate occasions, subjects performed a 100-km self-paced time trial (randomized and balanced order). This was interspersed with four 1-km and four 4-km maximal efforts reflecting the physical requirements of racing. Before each trial 38 ± 3 g of GAL or GLUC was ingested in a 6% concentrate fluid form 1 hr preexercise and then during exercise at a rate of 37 ± 3 g/hr. Performance variables were recorded for all 1- and 4-km efforts, all interspersed intervals, and the total 100-km distance. Noninvasive indicators of work intensity (heart rate [HR] and rating of perceived exertion) were also recorded.Results:Times taken to complete the 100-km performance trial were 8,298 ± 502 and 8,509 ± 578 s (p = .132), with mean power outputs of 271 ± 37 and 256 ± 45 W (p = .200), for GAL and GLUC, respectively. Mean HR did not differ (GAL 157 ± 7 and GLUC 157 ± 7 beats/min, p = .886). A main effect of carbohydrate (CHO) type on time to complete 4-km efforts occurred, with no CHO Type × Effort Order interaction observed. No main effect of CHO type or interaction of CHO Type × Sequential Order occurred for 1-km efforts.Conclusion:A 6% GAL drink does not enhance performance time during a self-paced cycling performance trial in highly trained endurance cyclists compared with a formula typically used by endurance athletes but may improve the ability to produce intermediate self-paced efforts.


2019 ◽  
Vol 126 (4) ◽  
pp. 870-879 ◽  
Author(s):  
Mark P. Funnell ◽  
Stephen A. Mears ◽  
Kurt Bergin-Taylor ◽  
Lewis J. James

Knowledge of hydration status may contribute to hypohydration-induced exercise performance decrements; therefore, this study compared blinded and unblinded hypohydration on cycling performance. Fourteen trained, nonheat-acclimated cyclists (age: 25 ± 5 yr; V̇o2peak: 63.3 ± 4.7 ml·kg−1·min−1; cycling experience: 6 ± 3 yr) were pair matched to blinded (B) or unblinded (UB) groups. After familiarization, subjects completed euhydrated (B-EUH; UB-EUH) and hypohydrated (B-HYP; UB-HYP) trials in the heat (31°C); 120-min cycling preload (50% Wpeak) and a time trial (~15 min). During the preload of all trials, 0.2 ml water·kg body mass−1 was ingested every 10 min, with additional water provided during EUH trials to match sweat losses. To blind the B group, a nasogastric tube was inserted in both trials and used to provide water in B-EUH. The preload induced similar ( P = 0.895) changes in body mass between groups (B-EUH: −0.6 ± 0.5%; B-HYP: −3.0 ± 0.5%; UB-EUH: −0.5 ± 0.3%; UB-HYP −3.0 ± 0.3%). All variables responded similarly between B and UB groups ( P ≥ 0.558), except thirst ( P = 0.004). Changes typical of hypohydration (increased heart rate, rating of perceived exertion, gastrointestinal temperature, serum osmolality and thirst, and decreased plasma volume; P ≤ 0.017) were apparent in HYP by 120 min. Time trial performance was similar between groups ( P = 0.710) and slower ( P ≤ 0.013) with HYP for B (B-EUH: 903 ± 89 s; B-HYP: 1,008 ± 121 s; −11.4%) and UB (UB-EUH: 874 ± 108 s; UB-HYP: 967 ± 170 s; −10.1%). Hypohydration of ~3% body mass impairs time trial performance in the heat, regardless of knowledge of hydration status. NEW & NOTEWORTHY This study demonstrates, for the first time, that knowledge of hydration status does not exacerbate the negative performance consequences of hypohydration when hypohydration is equivalent to ~3% body mass. This is pivotal for the interpretation of the many previous studies that have not blinded subjects to their hydration status and suggests that these previous studies are not likely to be confounded by the overtness of the methods used to induce hypohydration.


2015 ◽  
Vol 10 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Martin J. Barwood ◽  
Jo Corbett ◽  
Christopher R.D. Wagstaff ◽  
Dan McVeigh ◽  
Richard C. Thelwell

Purpose:Unpleasant physical sensations during maximal exercise may manifest themselves as negative cognitions that impair performance, alter pacing, and are linked to increased rating of perceived exertion (RPE). This study examined whether motivational self-talk (M-ST) could reduce RPE and change pacing strategy, thereby enhancing 10-km time-trial (TT) cycling performance in contrast to neutral self-talk (N-ST).Methods:Fourteen men undertook 4 TTs, TT1–TT4. After TT2, participants were matched into groups based on TT2 completion time and underwent M-ST (n = 7) or N-ST (n = 7) after TT3. Performance, power output, RPE, and oxygen uptake (VO2) were compared across 1-km segments using ANOVA. Confidence intervals (95%CI) were calculated for performance data.Results:After TT3 (ie, before intervention), completion times were not different between groups (M-ST, 1120 ± 113 s; N-ST, 1150 ± 110 s). After M-ST, TT4 completion time was faster (1078 ± 96 s); the N-ST remained similar (1165 ± 111 s). The M-ST group achieved this through a higher power output and VO2 in TT4 (6th–10th km). RPE was unchanged. CI data indicated the likely true performance effect lay between 13- and 71-s improvement (TT4 vs TT3).Conclusion:M-ST improved endurance performance and enabled a higher power output, whereas N-ST induced no change. The VO2 response matched the increase in power output, yet RPE was unchanged, thereby inferring a perceptual benefit through M-ST. The valence and content of self-talk are important determinants of the efficacy of this intervention. These findings are primarily discussed in the context of the psychobiological model of pacing.


2018 ◽  
Vol 13 (3) ◽  
pp. 274-282 ◽  
Author(s):  
Scott Cocking ◽  
Mathew G. Wilson ◽  
David Nichols ◽  
N. Timothy Cable ◽  
Daniel J. Green ◽  
...  

Introduction: Ischemic preconditioning (IPC) may enhance endurance performance. No previous study has directly compared distinct IPC protocols for optimal benefit. Purpose: To determine whether a specific IPC protocol (ie, number of cycles, amount of muscle tissue, and local vs remote occlusion) elicits greater performance outcomes. Methods: Twelve cyclists performed 5 different IPC protocols 30 min before a blinded 375-kJ cycling time trial (TT) in a laboratory. Responses to traditional IPC (4 × 5-min legs) were compared with those to 8 × 5-min legs and sham (dose cycles), 4 × 5-min unilateral legs (dose tissue), and 4 × 5-min arms (remote). Rating of perceived exertion and blood lactate were recorded at each 25% TT completion. Power (W), heart rate (beats/min), and oxygen uptake () (mL · kg−1 · min−1) were measured continuously throughout TTs. Magnitude-based-inference statistics were employed to compare variable differences to the minimal practically important difference. Results: Traditional IPC was associated with a 17-s (0, 34) faster TT time than sham. Applying more dose cycles (8 × 5 min) had no impact on performance. Traditional IPC was associated with likely trivial higher blood lactate and possibly beneficial lower responses vs sham. Unilateral IPC was associated with 18-s (−11, 48) slower performance than bilateral (dose tissue). TT times after remote and local IPC were not different (0 [−16, 16] s). Conclusion: The traditional 4 × 5-min (local or remote) IPC stimulus resulted in the fastest TT time compared with sham; there was no benefit of applying a greater number of cycles or employing unilateral IPC.


2017 ◽  
Vol 12 (3) ◽  
pp. 393-401 ◽  
Author(s):  
Shane Malone ◽  
Mark Roe ◽  
Dominic A. Doran ◽  
Tim J. Gabbett ◽  
Kieran D. Collins

Purpose:To examine the association between combined session rating of perceived exertion (RPE) workload measures and injury risk in elite Gaelic footballers.Methods:Thirty-seven elite Gaelic footballers (mean ± SD age 24.2 ± 2.9 y) from 1 elite squad were involved in a single-season study. Weekly workload (session RPE multiplied by duration) and all time-loss injuries (including subsequent-wk injuries) were recorded during the period. Rolling weekly sums and wk-to-wk changes in workload were measured, enabling the calculation of the acute:chronic workload ratio by dividing acute workload (ie, 1-weekly workload) by chronic workload (ie, rolling-average 4-weekly workload). Workload measures were then modeled against data for all injuries sustained using a logistic-regression model. Odds ratios (ORs) were reported against a reference group.Results:High 1-weekly workloads (≥2770 arbitrary units [AU], OR = 1.63–6.75) were associated with significantly higher risk of injury than in a low-training-load reference group (<1250 AU). When exposed to spikes in workload (acute:chronic workload ratio >1.5), players with 1 y experience had a higher risk of injury (OR = 2.22) and players with 2–3 (OR = 0.20) and 4–6 y (OR = 0.24) of experience had a lower risk of injury. Players with poorer aerobic fitness (estimated from a 1-km time trial) had a higher injury risk than those with higher aerobic fitness (OR = 1.50–2.50). An acute:chronic workload ratio of (≥2.0) demonstrated the greatest risk of injury.Conclusions:These findings highlight an increased risk of injury for elite Gaelic football players with high (>2.0) acute:chronic workload ratios and high weekly workloads. A high aerobic capacity and playing experience appears to offer injury protection against rapid changes in workload and high acute:chronic workload ratios. Moderate workloads, coupled with moderate to high changes in the acute:chronic workload ratio, appear to be protective for Gaelic football players.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 862 ◽  
Author(s):  
Yuichi Tsuda ◽  
Makoto Yamaguchi ◽  
Teruyuki Noma ◽  
Eiji Okaya ◽  
Hiroyuki Itoh

Although several kinds of amino acids (AAs) are known to affect physiological actions during exercise, little is known about the combined effects of a mixture of several AAs on fatigue during exercise. The aim of the present study was to investigate the effect of an AA mixture supplement containing arginine, valine, and serine on exercise-induced fatigue in healthy volunteers. These AAs were selected because they were expected to reduce fatigue during exercise by acting the positive effects synergistically. A randomized, double-blinded, placebo-controlled crossover trial was conducted. Thirty-nine males ingested an AA mixture containing 3600 mg of arginine, 2200 mg of valine, and 200 mg of serine or a placebo each day for 14 days. On the 14th day, the participants completed an exercise trial on a cycle ergometer at 50% of VO2max for 120 min. After the two-week washout period, the participants repeated the same trial with the other test sample. The participant’s feeling of fatigue based on a visual analog scale (VAS) and a rating of perceived exertion (RPE), as well as blood and physical parameters were evaluated. The feeling of fatigue based on VAS and RPE were significantly improved in AA compared to those in placebo. In the blood analysis, the increase in serum total ketone bodies during exercise and plasma tryptophan/branched-chain amino acids were significantly lower in AA than those in placebo. The present study demonstrated that supplementation with an AA mixture containing arginine, valine, and serine reduced the feeling of fatigue during exercise. The AA mixture also changed several blood parameters, which may contribute to the anti-fatigue effect.


Sign in / Sign up

Export Citation Format

Share Document