Role of Wild Small Ruminants in the Epidemiology of Peste Des Petits Ruminants

2013 ◽  
Vol 61 (5) ◽  
pp. 411-424 ◽  
Author(s):  
M. Munir
Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1133 ◽  
Author(s):  
Claudia Schulz ◽  
Christine Fast ◽  
Ulrich Wernery ◽  
Jörg Kinne ◽  
Sunitha Joseph ◽  
...  

Peste-des-petits-ruminants virus (PPRV) causes a severe respiratory disease in small ruminants. The possible impact of different atypical host species in the spread and planed worldwide eradication of PPRV remains to be clarified. Recent transmission trials with the virulent PPRV lineage IV (LIV)-strain Kurdistan/2011 revealed that pigs and wild boar are possible sources of PPRV-infection. We therefore investigated the role of cattle, llamas, alpacas, and dromedary camels in transmission trials using the Kurdistan/2011 strain for intranasal infection and integrated a literature review for a proper evaluation of their host traits and role in PPRV-transmission. Cattle and camelids developed no clinical signs, no viremia, shed no or only low PPRV-RNA loads in swab samples and did not transmit any PPRV to the contact animals. The distribution of PPRV-RNA or antigen in lymphoid organs was similar in cattle and camelids although generally lower compared to suids and small ruminants. In the typical small ruminant hosts, the tissue tropism, pathogenesis and disease expression after PPRV-infection is associated with infection of immune and epithelial cells via SLAM and nectin-4 receptors, respectively. We therefore suggest a different pathogenesis in cattle and camelids and both as dead-end hosts for PPRV.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
R. N. Omani ◽  
G. C. Gitao ◽  
J. Gachohi ◽  
P. K. Gathumbi ◽  
B. A. Bwihangane ◽  
...  

A study was conducted to determine the presence of Peste des petits ruminants (PPR) in camel population kept together with small ruminants in Isiolo, Mandera, Marsabit, and Wajir counties of Kenya. This was done in the wake of a disease with unknown etiology “Camel Sudden Death Syndrome” camels in the horn of Africa. Thirty-eight (38) samples, 12, 8, 15, and 3 samples, were collected from Mandera, Wajir, Isiolo, and Marsabit, respectively, from 25 camels, 7 goats, and 4 sheep. One camel in Mandera and one goat in Wajir were confirmed positive for PPR virus (PPRV) through reverse Polymerase Chain Reaction. The analysis of sequences revealed closest nucleotide identities of obtained sequences from both goat and camel to the lineage III of PPRV albeit with 60.29% of nucleotide identity. This study establishes that camels in the study area suffer with PPR manifest clinical signs that are mainly characterized by inappetence, loss of body condition, and general weakness terminally leading to diarrhea, conjunctivitis, and ocular nasal discharges preceding death. These clinical signs are similar to those observed in small ruminants with slight variations of manifestations such as keratoconjunctivitis as well as edema of the ventral surface of the abdomen. This shows that camels could be involved in the epidemiology of PPR in the region and that PPRV could be involved in the epidemics of Camel Sudden Death syndrome. There is therefore a need for resources to be dedicated in understanding the role camels play in the epidemiology of PPR and the role of the disease in Camels Sudden death syndrome.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 838
Author(s):  
Bryony A. Jones ◽  
Mana Mahapatra ◽  
Daniel Mdetele ◽  
Julius Keyyu ◽  
Francis Gakuya ◽  
...  

Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015–2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant’s gazelle, impala, Thomson’s gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018–2019, a cross-sectional survey of randomly selected African buffalo and Grant’s gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant’s gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife–livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson’s gazelle and wildebeest.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1698
Author(s):  
Daniel Pius Mdetele ◽  
Erick Komba ◽  
Misago Dimson Seth ◽  
Gerald Misinzo ◽  
Richard Kock ◽  
...  

Peste des petits ruminants (PPR) is an important transboundary animal disease of domestic small ruminants, camels, and wild artiodactyls. The disease has significant socio-economic impact on communities that depend on livestock for their livelihood and is a threat to endangered susceptible wild species. The aim of this review was to describe the introduction of PPR to Tanzania and its subsequent spread to different parts of the country. On-line databases were searched for peer-reviewed and grey literature, formal and informal reports were obtained from Tanzanian Zonal Veterinary Investigation Centres and Laboratories, and Veterinary Officers involved with PPR surveillance were contacted. PPR virus (PPRV) was confirmed in northern Tanzania in 2008, although serological data from samples collected in the region in 1998 and 2004, and evidence that the virus was already circulating in Uganda in 2003, suggests that PPRV might have been present earlier than this. It is likely that the virus which became established in Tanzania was introduced from Kenya between 2006–7 through the cross-border movement of small ruminants for trade or grazing resources, and then spread to eastern, central, and southern Tanzania from 2008 to 2010 through movement of small ruminants by pastoralists and traders. There was no evidence of PPRV sero-conversion in wildlife based on sera collected up to 2012, suggesting that they did not play a vectoring or bridging role in the establishment of PPRV in Tanzania. PPRV lineages II, III and IV have been detected, indicating that there have been several virus introductions. PPRV is now considered to be endemic in sheep and goats in Tanzania, but there has been no evidence of PPR clinical disease in wildlife species in Tanzania, although serum samples collected in 2014 from several wild ruminant species were PPRV sero-positive. Similarly, no PPR disease has been observed in cattle and camels. In these atypical hosts, serological evidence indicates exposure to PPRV infection, most likely through spillover from infected sheep and goats. Some of the challenges for PPRV eradication in Tanzania include movements of small ruminants, including transboundary movements, and the capacity of veterinary services for disease surveillance and vaccination. Using wildlife and atypical domestic hosts for PPR surveillance is a useful indicator of endemism and the ongoing circulation of PPRV in livestock, especially during the implementation of vaccination to control or eliminate the disease in sheep and goats. PPR disease has a major socio-economic impact in Tanzania, which justifies the investment in a comprehensive PPRV eradication programme.


2020 ◽  
Vol 165 (10) ◽  
pp. 2147-2163 ◽  
Author(s):  
William G. Dundon ◽  
Adama Diallo ◽  
Giovanni Cattoli

Abstract Small ruminants (e.g., sheep and goats) contribute considerably to the cash income and nutrition of small farmers in most countries in Africa and Asia. Their husbandry is threatened by the highly infectious transboundary viral disease peste des petits ruminants (PPR) caused by peste-des-petits-ruminants virus (PPRV). Given its social and economic impact, PPR is presently being targeted by international organizations for global eradication by 2030. Since its first description in Côte d’Ivoire in 1942, and particularly over the last 10 years, a large amount of molecular epidemiological data on the virus have been generated in Africa. This review aims to consolidate these data in order to have a clearer picture of the current PPR situation in Africa, which will, in turn, assist authorities in global eradication attempts.


2008 ◽  
Vol 79 (2-3) ◽  
pp. 152-157 ◽  
Author(s):  
Haider Ali Khan ◽  
Muhammad Siddique ◽  
Muhammad Abubakar ◽  
Muhammad Javed Arshad ◽  
Manzoor Hussain

2021 ◽  
Vol 6 (1) ◽  
pp. 60-68
Author(s):  
O. V. Suntsova ◽  
V. A. Rar ◽  
O. V. Lisak ◽  
I. V. Meltsov ◽  
E. K. Doroschenko ◽  
...  

Anaplasmosis of ruminants is a group of natural focal infections caused by bacteria from the genus Anaplasma of the Anaplasmataceae family. The main etiological agent of anaplasmosis in sheep, goats, and wild ruminants is Anaplasma ovis, which parasitizes in the erythrocytes of these animals. The purpose of this study was the finding and identification of Anaplasma spp. in the blood of small ruminants using genetic methods and obtaining data on the distribution of anaplasmosis in the Irkutsk region. 20 goat blood samples, 611 sheep blood samples and 209 Dermacentor nuttalli ticks from 12 districts of the Irkutsk region were examined for the presence of Anaplasma spp. Only one type of anaplasma, A. ovis, was found among the genotyped samples. A. ovis was found in the blood of sheep and goats in all of the studied districts of the Irkutsk region. The proportion of sheep blood samples containing anaplasma DNA varied from 30 % to 85 %, in goats – from 10 % to 100 % in different districts, and averaged 57.8 % in sheep and 55,0 % in goats. Frequency of infection of D. nuttalli ticks with A. ovis was 5.7 %. The nucleotide sequences of the samples detected in the blood of small ruminants on the territory of the Irkutsk region differed from each other by a single nucleotide substitution and were identical to the sequences of the type strain Haibei, as well as the sequences of A. ovis previously found in the blood of sheep from Mongolia, deer from China, and Dermacentor niveus and Dermacentor nuttalli ticks from China. These sequences were also identical to the sequences previously found in the blood of sheep from Altai and in Dermacentor nuttalli ticks from Tuva, which indicates the wide distribution of these A. ovis genovariants in Siberia and the probable role of D. nuttalli as a carrier of the agent of anaplasmosis of small ruminants in the Irkutsk region.


Author(s):  
A. Aïssa ◽  
F. Manolaraki ◽  
H. Ben Salem ◽  
H. Hoste ◽  
K. Kraiem

Background: Mediterranean shrub species cover more than 70% of the total area in Tunisia and in summer when the herbaceous species have wilted, they constitute feeding resource for livestock. The use of tanniniferous shrubs seems to be a good alternative to control gastrointestinal nematodes infections in small ruminants. This study evaluated the in vitro anthelmintic (AH) effect of Ceratonia siliqua (C. siliqua), Periploca angustifolia Labill. (P. angustifolia) and Medicago arborea (M. arborea) against Haemonchus contortus third stage larvae (L3). Methods: The larval exsheathment assay (LEA) was used to determine the proportions (%) of exsheathment of five acetonic extracts at different concentrations (1200, 600, 300, 150 μg/ml). To confirm the role of tannins in the AH effects of extracts, polyvinyl polypyrolidone (PVPP) was used as deactivating chemical tannins. Result: The highest % L3 exsheathed was recorded for M. arborea (55.01%) and the lowest value was founded for C. siliqua and P. angustifolia leaves (16.26%). Our results were concentration-dependent (P less than 0.001). The % of exsheathment increased as the time of incubation increased (P less than 0.001). P. angustifolia pods recorded the lowest EC50 value (P less than 0.05). After PVPP addition, all the acetonic extracts showed a restoration of L3 exsheathment values similar to control values (P less than 0.001).


Author(s):  
P.K. Arakelyan ◽  
A.S. Dimova ◽  
A.V. Rudenko ◽  
N.V. Khristenko ◽  
V.T. Wolf ◽  
...  

Out of 2942 blood serum samples from small ruminants of 10 flocks with a natural course of brucellosis caused by B. melitensis, 322 samples reacted with both antigens in the RID, of which 90 samples only with the O-PS M antigen (from B. melitensis), only with O-PS A-antigen (from B. abortus) reactive was not revealed. In healthy sheep immunized against brucellosis with the vaccine from strain 19 according to different schemes, only the O-PS M antigen was not found to react. Reaction with O-PS A- and M-antigens was observed in animals that were immunized twice subcutaneously at a dose of 40 billion mc. - after 2 months. after revaccination (60%), as well as in those reimmunized conjunctivally at a dose of 4 billion mc. according to the background of primary immunization subcutaneously at a dose of 40 billion mc. (10%) In animals immunized once or twice conjunctivally, reacting in RID with both antigens was not detected. Out of 2432 blood serum samples of small ruminants, 10 flocks with a brucellosis problem immunized against brucellosis with a vaccine from B.abortus strain 19 according to different schemes, 151 samples (6.2%) reacted positively with both O-PS antigens in RID with both O-PS antigens, of which only 86 samples (56.9%) reacted with O-PS M-antigen. The prevalence of indications of RID with O-PS M-antigen over RID with O-PS A-antigen (O-PS antigen made from Brucellae abortus) in small ruminants in one or another flock is characteristic of infection caused by brucellae melitensis at least in the absence, at least in the presence of the fact of immunization with a vaccine from the B. abortus 19 strain. RID with O-PS M-antigen is an objective indicator of epizootic danger and is able to differentiate brucellosis (B. melitensis) in small ruminants from vaccination-induced reactions (B. abortus 19).


2021 ◽  
Vol 77 (05) ◽  
pp. 226-231
Author(s):  
WIESŁAW NIEDBALSKI ◽  
ANDRZEJ FITZNER ◽  
KRZYSZTOF BULENGER ◽  
ANDRZEJ KĘSY

Peste des petits ruminants (PPR) is a highly contagious and economically important, viral disease of small ruminants caused by the peste des petits ruminants virus (PPRV), which belongs to the genus Morbilivirus in the family Paramyxoviridae. PPR control is achieved mostly through vaccination and/or slaughter of susceptible animals coupled with clinical or laboratory-based diagnosis. Since clinical signs of PPR are not disease-specific and clinical diagnostics is not reliable, it should be confirmed by laboratory testing. Laboratory confirmation of clinical suspicions is made by detection of PPRV in blood, swabs or post-mortem tissues through classical virus isolation (VI), agar gel immunodiffusion (AGID)/agar gel precipitation test (AGPT), counter-immunoelectrophoresis (CIE), immunoperoxidase test (IPT) or enzyme-linked immunosorbent (ELISA) assays. However, these conventional methods have been superseded by more rapid, sensitive and accurate molecular diagnostic techniques based on the amplification of parts of either nucleocapsid (N) or fusion (F) protein gene, such as RT-PCR, real-time RT-PCR, reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription recombinase polymerase amplification (RT-RPA) and Oxford nanopore MinION technology. Although these molecular diagnostic assays are accurate, rapid and sensitive, they have to be performed in laboratory settings, and samples must be transported under appropriate conditions from the field to the laboratory, which can delay the confirmation of PPRV infection. The recently developed immunochromatographic lateral flow device (IC-LFD) assay can be used in the field (“pen-side”) without the need for expensive equipment, so a well-established laboratory is not required. The control and eventual eradication of PPR is now one of the top priorities for the Food and Agriculture Organization (FAO) and the World Organization for Animal Health (OIE). In 2015, the international community agreed on a global strategy for PPR eradication, setting 2030 as a target date for elimination of the disease


Sign in / Sign up

Export Citation Format

Share Document