HISTORY OF DEVELOPMENT OF SQUID-LIKE BIOMIMETIC UNDERWATER ROBOTS WITH UNDULATING SIDE FINS

2015 ◽  
Vol 74 (9) ◽  
Author(s):  
Md. Mahbubar Rahman ◽  
W. B. Wan Nik ◽  
Yasuyuki Toda

The underwater robot is a basic tool to explore the unknown territories in the underwater region of the coastal areas and oceans, both from the scientific and industrial perspectives. With the aim of developing an efficient and environmentally friendly underwater robot, a Squid-like robot with two undulating side fins has been developing for many years by the authors' group in Osaka University, Japan. The high ambitious project started in 2002; from then different models have been developed to reach the goal of achieving a high-performance underwater vehicle. The body and propulsion system of the robot have been developed by following the swimming mechanism of flat-fishes that use undulating side fins, e.g. Squid, Stingray Cuttlefish and Manta. The Squid-robot is now in its fifth generation of development. In the present paper, the review of the development of models of the Squid-robot is presented. The development of the mechanical system and the control system of each model is described in brief. Some CFD computations and motion simulations of Model-4 are also discussed. The background of developing a new model and the updated features are stated for each model respectively. The future target of development of the robot is also pointed out. The objective of this paper is to provide relevant and useful information to the engineers involved in underwater vehicle design, and for those with an interest in the fast-growing area of biomimetic swimming robots.

1923 ◽  
Vol 19 (2) ◽  
pp. 93-93
Author(s):  
V. Aristovsky

On the basis of observations on patients with African relapsing typhus the author expresses the following view on the history of development of spir. Duttoni in the body of the tick and in the organism of a sick person: spirochaetes entering the tick body together with the blood of a sick person lose their mobility and turn into granules, which are small lumps surrounded by a homogeneous mass; at some time they can be found in eggs in the ovary and in young larvae (nymphs).


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 566 ◽  
Author(s):  
Zhijie Tang ◽  
Zhen Wang ◽  
Jiaqi Lu ◽  
Gaoqian Ma ◽  
Pengfei Zhang

This paper introduces the near-field detection system of an underwater robot based on the fish lateral line. Inspired by the perception mechanism of fish’s lateral line, the aim is to add near-field detection functionality to an underwater vehicle. To mimic the fish’s lateral line, an array of pressure sensors is developed and installed on the surface of the underwater vehicle. A vibrating sphere is simulated as an underwater pressure source, and the moving mechanism is built to drive the sphere to vibrate at a certain frequency near the lateral line. The calculation of the near-field pressure generated by the vibrating sphere is derived by linearizing the kinematics and dynamics conditions of the free surface wave equation. Structurally, the geometry shape of the detection system is printed by a 3D printer. The pressure data are sent to the computer and analyzed immediately to obtain information of the pressure source. Through the experiment, the variation law of the pressure is generated when the source vibrates near the body, and is consistent with the simulation results of the derived pressure calculation formula. It is found that the direction of the near-field pressure source can distinguished. The pressure amplitude of the sampled signals are extracted to be prepared for the next step to estimate the vertical distance between the center of the pressure source and the lateral line.


2010 ◽  
Vol 164 ◽  
pp. 149-154 ◽  
Author(s):  
Piotr Szymak

Automatic control of motion of underwater robots, particularly along desired trajectory, requires application of proper controllers taking into account dynamics of the underwater robot and features of the marine environment. In the paper the mathematical model of an underwater vehicle [2] and the architecture of designed control system [4] have been presented. Moreover, selected results of numerical analysis in the form of comparison of different course controllers have been provided.


2021 ◽  
Vol 64 (2) ◽  
pp. 109-117
Author(s):  
Stefan Mitrović ◽  
Dragana Popović ◽  
Miroslav Tepavčević ◽  
Dimitrije Zakić

This paper presents the results of the authors' laboratory testing of physical, mechanical and durability properties of Ultra-high Performance Concrete (UHPC). The short history of development and application of UHPC concrete is presented in the first part of this paper while the second part deals with the experimental investigation, presenting the results of material characterization obtained from physical-mechanical and durability tests. Based on the results shown in the paper, the mean value of compressive strength obtained at 28 days is 114 MPa, with the average density of 2270 kg/m3 in hardened state. The results showed that tested UHPC belongs to the highest class of water impermeability V-III, as well as the highest class MS0 (without visible damage) in a simulated freeze-thaw environment and de-icing salt attack test. Also, the highest class XM3 for abrasion resistance was achieved. Additional tests showed that the tested concrete fulfils the requirements for the highest exposure classes XC4 and XD4, in terms of resistance to carbonation and the penetration of chloride ions. Conclusions and recommendations for further development and possible application of UHPC are presented at the end of paper.


2020 ◽  
Vol 5 (3) ◽  
pp. 6-13
Author(s):  
I D Galushko ◽  
V A Salmina ◽  
G M Makaryants

For underwater robots in the past three decades, the problem of energy efficiency and acoustic noiselessness has arisen sharply. The solution of these problems is inextricably linked with the solution  of the problems of dynamics and vibroacoustics arising in the flow of a liquid under the flow of underwater bodies. These problems include the problem of the pressure pulsations occurrence and velocity distributed over the surface of the object, as well as noise and vibrations caused by these pulsations. To create energy-efficient and low-noise underwater robots, it is necessary to create methods for influencing the structure of wall currents and the shape of the aerodynamic surfaces of the robot in order to reduce its surface friction, as well as impedance. In this paper, we consider the development of an experimental bench for testing the main executive systems of an underwater robot with an anisotropic hull, including a buoyancy variation system, a trim and roll change system, and a hull geometry changing system.


2021 ◽  
Author(s):  
Masaki Yurugi ◽  
Toshiaki Nagai ◽  
Jun Shintake ◽  
Yusuke Ikemoto

Abstract Underwater robots are useful for exploring valuable resources and marine life. Traditional underwater robots use screw propellers, which may be harmful to marine life. In contrast, robots that incorporate the swimming principles, morphologies, and softness of aquatic animals are expected to be more adaptable to the surrounding environment. Rajiform is one of the swimming forms observed in nature, which swims by generating the traveling waves on flat large pectoral fins. From an anatomical point of view, Rajiform fins consist of cartilages encapsulated in soft tissue, thereby realizing anisotropic stiffness. We hypothesized that such anisotropy is responsible for the generation of traveling waves that enable a highly efficient swimming. We validate our hypothesis through the development of a stingray robot made of silicone-based cartilages and soft tissue. For comparison, we fabricate a robot without cartilages, as well as the one combining soft tissue and cartilage materials. The fabricated robots are tested to clarify their stiffness and swimming performance. The results show that inclusion of cartilages in the robot fins increases the swimming efficiency. It is suggested that arrangement and distribution of soft and hard areas inside the body structure is a key factor to realize high-performance soft underwater robots.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masaki Yurugi ◽  
Makoto Shimanokami ◽  
Toshiaki Nagai ◽  
Jun Shintake ◽  
Yusuke Ikemoto

AbstractUnderwater robots are useful for exploring valuable resources and marine life. Traditional underwater robots use screw propellers, which may be harmful to marine life. In contrast, robots that incorporate the swimming principles, morphologies, and softness of aquatic animals are expected to be more adaptable to the surrounding environment. Rajiform is one of the swimming forms observed in nature, which swims by generating the traveling waves on flat large pectoral fins. From an anatomical point of view, Rajiform fins consist of cartilage structures encapsulated in soft tissue, thereby realizing anisotropic stiffness. We hypothesized that such anisotropy is responsible for the generation of traveling waves that enable a highly efficient swimming. We validate our hypothesis through the development of a stingray robot made of silicone-based cartilages and soft tissue. For comparison, we fabricate a robot without cartilages, as well as the one combining soft tissue and cartilage materials. The fabricated robots are tested to clarify their stiffness and swimming performance. The results show that inclusion of cartilage structure in the robot fins increases the swimming efficiency. It is suggested that arrangement and distribution of soft and hard areas inside the body structure is a key factor to realize high-performance soft underwater robots.


2020 ◽  
Vol 5 (3 And 4) ◽  
pp. 155-160
Author(s):  
Mohsen Aghapoor ◽  
◽  
Babak Alijani Alijani ◽  
Mahsa Pakseresht-Mogharab ◽  
◽  
...  

Background and Importance: Spondylodiscitis is an inflammatory disease of the body of one or more vertebrae and intervertebral disc. The fungal etiology of this disease is rare, particularly in patients without immunodeficiency. Delay in diagnosis and treatment of this disease can lead to complications and even death. Case Presentation: A 63-year-old diabetic female patient, who had a history of spinal surgery and complaining radicular lumbar pain in both lower limbs with a probable diagnosis of spondylodiscitis, underwent partial L2 and complete L3 and L4 corpectomy and fusion. As a result of pathology from tissue biopsy specimen, Aspergillus fungi were observed. There was no evidence of immunodeficiency in the patient. The patient was treated with Itraconazole 100 mg twice a day for two months. Pain, neurological symptom, and laboratory tests improved. Conclusion: The debridement surgery coupled with antifungal drugs can lead to the best therapeutic results.


Somatechnics ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 88-103 ◽  
Author(s):  
Kalindi Vora

This paper provides an analysis of how cultural notions of the body and kinship conveyed through Western medical technologies and practices in Assisted Reproductive Technologies (ART) bring together India's colonial history and its economic development through outsourcing, globalisation and instrumentalised notions of the reproductive body in transnational commercial surrogacy. Essential to this industry is the concept of the disembodied uterus that has arisen in scientific and medical practice, which allows for the logic of the ‘gestational carrier’ as a functional role in ART practices, and therefore in transnational medical fertility travel to India. Highlighting the instrumentalisation of the uterus as an alienable component of a body and subject – and therefore of women's bodies in surrogacy – helps elucidate some of the material and political stakes that accompany the growth of the fertility travel industry in India, where histories of privilege and difference converge. I conclude that the metaphors we use to structure our understanding of bodies and body parts impact how we imagine appropriate roles for people and their bodies in ways that are still deeply entangled with imperial histories of science, and these histories shape the contemporary disparities found in access to medical and legal protections among participants in transnational surrogacy arrangements.


Sign in / Sign up

Export Citation Format

Share Document