EFFECTS OF SHORT TERM AGING ON DYNAMIC CREEP PROPERTIES OF ASPHALT MIXTURES

2015 ◽  
Vol 76 (14) ◽  
Author(s):  
Meor Othman Hamzah ◽  
Seyed Reza Omranian

Many factors affect pavement service life. Aging as one of these factors occurs due to binder volatilization and oxidation. Aging increases binder viscosity and subsequently results in stiffer mixtures. Transportation of asphalt mixture from plant to field may cause variations in the levels of aging. This study attempts to determine the effects of aging on mixture permanent deformation or rutting during transportation from plant to field and to simulate the aging conditions in the laboratory. The rutting parameters evaluated include creep stiffness, cumulative strain, creep modulus and creep rates of mixtures collected from plant, field and samples artificially produced in the laboratory. The results showed that temperature increment significantly changed mixtures rutting properties, while aging during mixture transportation from plant to field has no effect on rutting. It was also found that artificially aging the mixtures by varying aging duration that conducted for this study, cannot exactly simulate the plant and field aging conditions. 

2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2016 ◽  
Vol 700 ◽  
pp. 238-246 ◽  
Author(s):  
Dewi Sri Jayanti ◽  
Ramadhansyah Putra Jaya ◽  
Siti Aspalaili Mohamd Sharif ◽  
Norhidayah Abdul Hassan ◽  
Siti Nur Amiera Jeffry ◽  
...  

This study investigated the effects of adding various percentages of styrene–butadiene rubber (SBR) on the engineering properties and performance of asphaltic concrete. SBR was added into the mixture at 0%, 1%, 3%, and 5% on a mass-to-mass basis. Conventional bitumen used in this study was 80/100 PEN. The performances of SBR on the asphalt mixture properties were evaluated based on Marshall Stability, abrasion loss, resilient modulus, and dynamic creep test. Results indicated an improvement in the engineering properties and performance with the addition of SBR content. For instance, stability increased by 18.8% as the SBR content increased from 0% to 5%. Dynamic creep stiffness also increased by 46.2%. Similarly, the resilient modulus was also found to increase by approximately 84.6%.


2021 ◽  
Vol 6 (12) ◽  
pp. 183
Author(s):  
Abhirup B. Roy-Chowdhury ◽  
Mofreh F. Saleh ◽  
Miguel Moyers-Gonzalez

Permanent deformation or rutting is a major mode of failure in Hot Mix Asphalt (HMA) pavements. The binder used in the asphalt mixture plays an important role in the rutting resistance performance of the mixture. Currently, the Superpave rutting parameter and a more advanced test called multiple stress creep and recovery (MSCR) are the most widely used tests for rutting characterisation of asphalt binders. However, they both have their own merits and demerits. This study was undertaken to introduce a combined Elastic-Plastic (CEP) parameter as an additional binder rheological rutting parameters. The study also aimed at investigating the applicability and potential of this parameter to supplement the existing binder rheological parameters to characterise the properties of asphalt binder related to HMA rutting performance. Additionally, the correlations of the binder rheological parameters with the asphalt mix rutting parameters generated by the dynamic creep and the dynamic modulus tests were investigated. For the polymer-modified binders, Styrene-Butadiene-Styrene (SBS) was added to the PG 70-16 binder at two concentration levels (4, and 6% by the mass of the binder). A dense-graded HMA AC 14 was tested in the Dynamic Modulus (DM) and Dynamic Creep (DC) tests for evaluating the rutting performance. The CEP parameter was found to be much more reliable than the traditional G*/sin (δ) and the non-recoverable creep compliance (Jnr) parameters for evaluating the rutting behaviour of polymer modified asphalt binders, evident from better correlations of CEP with the asphalt mix performance. Unlike Jnr, the CEP parameter revealed a wider range of values, which is comparable with asphalt mixture test results.


2016 ◽  
Vol 16 ◽  
pp. 69-81 ◽  
Author(s):  
Muhammad Karami ◽  
Ainalem Nega ◽  
Ahdyeh Mosadegh ◽  
Hamid Nikraz

The main objective this study is to evaluate the permanent deformation of buton rock asphalt (BRA) modified asphalt paving mixtures using dynamic creep test so that long term deformation behavior of asphalt mixtures can be characterized. The dynamic creep test was conducted on unmodified and BRA modified asphalt mixture using UTM25 machine. Asphalt cement of C170 from a regional supplier in Western Australia was used as the base asphalt binder for unmodified asphalt mixture; and BRA modified asphalt mixtures were made by substituting the base asphalt with 10, 20, and 30% (by weight of total asphalt binder) natural binder continuing granular BRA modified binder. The granular (pellets) BRA modified binder with a diameter of 7-10 mm was produced and extracted according the Australia Standard. Crushed granite was taken from a local quarry of the region; and dense graded for both unmodified and BRA modified asphalt mixture with the nominal size of 10 mm was used. The results of this analysis showed that BRA modified had a good performance as compared with unmodified asphalt mixtures, and increase in the content modified binder to 10%, 20%, and 30% resulted in decrease of the total permanent strain.


2018 ◽  
Vol 4 (2) ◽  
pp. 334 ◽  
Author(s):  
Adham Mohammed Alnadish ◽  
Yusri Mohamad Aman

This study aimed to evaluate the possibility of reducing the thickness of asphalt layer as a novel solution for the high density of asphalt layer incorporated with steel slag aggregate, which increase the cost of transportation. Mechanistic-Empirical Pavement Design (MEPDG) approach was employed to evaluate the benefits of introducing polyvinyl alcohol fiber in terms of reducing the thickness of asphalt layer as well as the extension service life of asphalt layer. On the other hand, the correlation between creep strain slope (CSS) and secant creep stiffness modulus (SCSM) were assessed to provide a better evaluation and understanding concerning of the outputs of the dynamic creep test. The findings of this study showed that introducing polyvinyl alcohol fiber into the mixtures at the optimum content (0.5 kg/ton) have reduced the thickness of asphalt layer by approximately 10%. Additionally, polyvinyl alcohol fiber has increased the performance of the asphalt mixtures concerning of resilient modulus and dynamic creep. Furthermore, the correlation between CSS and SCSM was strong, which indicates that evaluation of permanent deformation using CSS and SCSM parameters provides better actual assessment than accumulation strain.


2014 ◽  
Vol 70 (4) ◽  
Author(s):  
Mohd Zul Hanif Mahmud ◽  
Haryati Yaacob ◽  
Ramadhansyah Putra Jaya ◽  
Norhidayah Abdul Hassan

This paper presents an investigation on the effects of flaky aggregates in asphalt mixture. In general, aggregate characteristics are critical to the performance of asphalt mixture. Therefore, flaky aggregate is normally avoided simply because it has significant contribution towards the gradation and reduces the interlocking characteristics of aggregates within asphalt mixture. In practice, it is recommended that the amount of flakiness aggregate should be limited to 25% or less. This study evaluates the mechanical properties of asphalt mixture specimens prepared with various percentages of flaky aggregates particularly 10%, 20% and 30% by the total weight of the mixture. Several laboratory tests were conducted including Marshall properties test, Indirect Tensile Modulus test and Dynamic Creep test. The results show that higher bitumen content is required with the increased in the amount of flaky aggregates added to mixture. Furthermore, greater amount of flaky aggregates tends to reduce the mixture’s resilient modulus and its resistance against permanent deformation.


Improvement in transportation system is never been as easy as just providing links for better connection and network but more to do with the pavement quality of the road itself. Modification with agriculture waste is just another approach to enhance the performance of asphaltic concrete. In this study, a non-traditional bitumen modifier from a coconut shell which is the charcoal coconut shell ash (CCSA) was used. Addition of CCSA in bitumen with 0%, 2%, 4%, 6%, and 8% by weight of bitumen were investigated along with the laboratory stimulation of aging was applied in this study. Properties of modified asphalt mixture were determined using resilient modulus, dynamic creep and Marshall Stability test.. Results of samples with CCSA which underwent aging show some improvement in terms of the stability and permanent deformation characteristics. Resilient modulus, dynamic creep and Marshall Stability tests recorded the highest rates when compared to controlled sample. Hence, for more durable asphalt concrete and high serviceability it is recommended to use 2% to 4% of CCSA.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nuha Salim Mashaan ◽  
Mohamed Rehan Karim

Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document