EQUAL USAGE OF EACH POWER SUPPLY IN A SCALABLE PARALLEL CONFIGURATION

2017 ◽  
Vol 79 (2) ◽  
Author(s):  
Mark Ryan S. To ◽  
Elmer R. Magsino

In this paper, a fuzzy logic controller determines the turning ON or OFF of a power supply in a scalable n-parallel power supply configuration. Each power supply is modeled using differential equations and only differs in the values of its parasitic resistances. This is done in a MATLAB/Simulink environment. A fuzzy logic controller accepts the power supply usage and the power supply’s input voltage perturbation as its inputs while the probability of the corresponding power supply turning ON is its output. The power supplies are connected in parallel configuration and tested under various conditions of static and dynamic current sharing load, voltage input perturbations and on the total number of active power supplies in a given parallel configuration. The number of power supplies n in the parallel configuration is changed by adding or removing a power supply. This addition or removal is termed as scalability. As a result, the fuzzy logic controller was able to guarantee that all power supplies in the scalable n-parallel configuration have equal usage while sharing the load current equally under a regulated output voltage.

2019 ◽  
Vol 8 (3) ◽  
pp. 8871-8874

This Work presents the Design and Analysis of LCC Resonant Converter for Power Supplies which are used for high Voltages. LCC Resonant Converter was designed and simulated in both Open loop and closed loop in Matlab Simulink. The Closed loop was found to have a lesser steady state error as compared with that of the open loop. The Stress across the Switches was measured for different input voltages and found that it is linearly proportional to the input voltage. Also the Output Voltage was plotted against different load conditions.


Author(s):  
M. Kavitha ◽  
V. Sivachidambaranathan

<p>Interleaved DC-DC converter with coupled inductor is used in standalone Photovoltaic, battery charger/discharger application. The main issue of the Interleaved DC-DC converter is that, it does not provide constant output voltage for a change in input voltage. Therefore, the converter efficiency is reduced. Hence to overcome this drawback, proper controller has to be used. In this paper, different control techniques such as PI, PID and Fuzzy logic controller are used. The simulation results of all three controllers were done using MATLAB/Simulink and compared. Fuzzy logic controller provides better regulated output voltage with less settling time of 0.04sec.</p>


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


Author(s):  
Habibullah Salim ◽  
Irma Husnaini ◽  
Asnil Asnil

This research aims to make buck converter prototype for PLTS system by using fuzzy logic controller. Buck converter is required in the PLTS system if the required unidirectional voltage is smaller than the output voltage of the solar cell. Buck converter used to convert 24 Volt dc voltage to 12 Volt dc with 60 watt capability. While fuzzy logic controller is used to improve buck converter performance based on pulse generation technique for switching. The application of fuzzy logic method is expected to improve the performance of the system by maintaining the stability of buck converter output voltage of 12 volts and reduce the output ripple value. Atmega8535 microcontroller is used to generate PWM pulses for switching on power circuits. The results obtained from the test using a 100 Ohm 5 Watt load obtained the buck converter output voltage of 12.4 Volt.


Author(s):  
Rambir Singh ◽  
Asheesh K. Singh ◽  
Rakesh K. Arya

This paper examines the size reduction of the fuzzy rule base without compromising the control characteristics of a fuzzy logic controller (FLC). A 49-rule FLC is approximated by a 4-rule simplest FLC using compensating factors. This approximated 4-rule FLC is implemented to control the shunt active power filter (APF), which is used for harmonic mitigation in source current. The proposed control methodology is less complex and computationally efficient due to significant reduction in the size of rule base. As a result, computational time and memory requirement are also reduced significantly. The control performance and harmonic compensation capability of proposed approximated 4-rule FLC based shunt APF is compared with the conventional PI controller and 49-rule FLC under randomly varying nonlinear loads. The simulation results presented under transient and steady state conditions show that dynamic performance of approximated simplest FLC is better than conventional PI controller and comparable with 49-rule FLC, while maintaining harmonic compensation within limits. Due to its effectiveness and reduced complexity, the proposed approximation methodology emerges out to be a suitable alternative for large rule FLC.


2012 ◽  
Vol 2 (3) ◽  
pp. 69-89 ◽  
Author(s):  
Rambir Singh ◽  
Asheesh K. Singh

This paper presents the design and analysis of an improved approximated simplest fuzzy logic controller (IASFLC). A cascade combination of simplest 4-rule fuzzy logic controller (FLC) and an nth degree polynomial is proposed as an IASFLC to approximate the control characteristics of a 49-rule FLC. The scheme is based on minimizing the sum of square errors between the control outputs of a 49-rule FLC and a simplest 4-rule FLC in the entire range of universe of discourse (UOD). The coefficients of compensating polynomial are evaluated by solving instantaneous square error equations at various test points in the entire UOD. This IASFLC maps the output of a 49-rule FLC with absolute deviation of less than 5%. The proposed IASFLC is used to control the dc link voltage of a three phase shunt active power filter (APF). A detailed analysis is performed during transient and steady state conditions to check power quality (PQ) and dynamic performance indices. The performance of proposed IASFLC is compared with a 49-rule FLC and approximated simplest fuzzy logic controller (ASFLC) based on minimization of the deviation at central values of membership functions (MFs). It is found comparatively better for harmonic and reactive compensation with a comparable dynamic response. The memory requirement and computational time of proposed IASFLC are less than the ASFLC.


2019 ◽  
Vol 59 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Erol Can

A 9-level inverter with a boost converter has been controlled with a fuzzy logic controller and a PID controller for regulating output voltage applications on resistive (R) and inductive (L), capacitance (C). The mathematical model of this system is created according to the fuzzy logic controlling new high multilevel inverter with a boost converter. The DC-DC boost converter and the multi-level inverter are designed and explained, when creating a mathematical model after a linear pulse width modulation (LPWM), it is preferred to operate the boost multi-level inverter. The fuzzy logic control and the PID control are used to manage the LPWM that allows the switches to operate. The fuzzy logic algorithm is presented by giving necessary mathematical equations that have second-degree differential equations for the fuzzy logic controller. After that, the fuzzy logic controller is set up in the 9-level inverter. The proposed model runs on different membership positions of the triangles at the fuzzy logic controller after testing the PID controller. After the output voltage of the converter, the output voltage of the inverter and the output current of the inverter are observed at the MATLAB SIMULINK, the obtained results are analysed and compared. The results show the demanded performance of the inverter and approve the contribution of the fuzzy logic control on multi-level inverter circuits.


Author(s):  
Lianxi Liu ◽  
Yiwei Chen ◽  
Xufeng Liao ◽  
Junchao Mu ◽  
Yintang Yang

This paper proposes a three-stage coarse-fine-tuning analog-assisted digital low dropout regulator (AAD-LDO) without digital ripple. The digital regulation consists of two stages, which break the accuracy-speed-power trade-off. To further improve transient response, a step-variable counter used in the first stage is designed, which makes sure that the output current can track the load current rapidly. The ripple caused by the digital regulation disappears due to the existence of the analog-assistant stage (in the proposed AAD-LDO). As a result, the AAD-LDO achieves the output voltage with high accuracy. Designed in a 0.18[Formula: see text][Formula: see text]m CMOS process, the proposed AAD-LDO has a layout area of 0.133[Formula: see text]mm. For the input range of 1.2–1.8[Formula: see text]V, the output voltage is 1[Formula: see text]V. The maximum load current is 10[Formula: see text]mA at the input voltage of 1.2[Formula: see text]V. The linear regulation and load regulation are 0.061[Formula: see text]mV/V and 0.0082[Formula: see text]mV/mA, respectively. The over/undershoot is suppressed effectively for a 9.5[Formula: see text]mA load step. The peak current efficiency is 99.78%.


Sign in / Sign up

Export Citation Format

Share Document