scholarly journals Probiotic Candidates Yeast Isolated from Dangke – Indonesian Traditional Fermented Buffalo Milk

Author(s):  
Gemilang Lara Utama ◽  
Siska Meliana ◽  
Mohamad Djali ◽  
Tri Yuliana ◽  
Roostita L. Balia

The aim of the study was to isolate and identify the yeast isolated from Dangke and its potential as probiotics. The purified isolates obtained were identified based on observations of macroscopic characteristics of colonies and microscopic cells. The ability as a probiotic yeast is obtained by testing the resistance towards acid conditions, bile salt resistance test and aggregation ability test against pathogenic bacteria using Salmonella sp. The yeast isolates were identified using the RapID Yeast Plus System. The isolation result was obtained D.10.3.d isolate that identified as Candida guilliermondii which showed probiotic characteristic. The yeast colony is round, cream‑colored, smooth surfaces, low convex elevations and entire edges, capable of growing on mediums with the pH of 4, containing 1 % and 5 % of bile salts and having the ability to aggregate Salmonella sp. at 15, 60, and 180 minutes.

2019 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Nurul Octavia Wasis ◽  
Nyoman Semadi Antara ◽  
Ida Bagus Wayan Gunam

Tabah bamboo shoot pickle is one of the fermented food which is the source of lactic acid bacteria.  Lactic acid bacteria (LAB) is beneficial to health because it has the ability as a probiotic. Lactic acid bacteria that have probiotic criteria should have resistance to low pH and bile salts. This study aims to determine isolates of lactic acid bacteria isolated from tabah bamboo shoot pickle resistant to low pH and bile salts (NaDC). Lactic acid bacteria were tested to low pH by using MRS broth that have different pH (pH 2, pH 3, pH 4 and pH 6.2 as a control) incubated at 37ºC for 3 hours. isolates were survive in low pH then continued in bile salt resistance test with 0.3% bile salt concentration for 15 minutes, 30 minutes, 45 minutes, 60 minutes and 24 hours. The results showed that three isolates out of 88 isolates had ability to grow in low pH and in medium supplemented by NaDC 0,3%. The isolates are AR 3057, AR 3101 and AR 6152 which can be used as candidat of  probiotic. Keywords : Tabah bamboo shoot pickle, lactic acid bacteria, probiotic, low pH, bile salt


2021 ◽  
Author(s):  
Marine Oberkampf ◽  
Audrey Hamiot ◽  
Pamela Altamirano-Silva ◽  
Paula Bellés-Sancho ◽  
Yannick D. N. Tremblay ◽  
...  

ABSTRACTTo cause disease, the important human enteropathogen Clostridioides difficile must colonize the gastro-intestinal tract but little is known on how this organism senses and responds to the harsh host environment to adapt and multiply. Nucleotide second messengers are signaling molecules used by bacteria to respond to changing environmental conditions. In this study, we showed for the first time that c-di-AMP is produced by C. difficile and controls the uptake of potassium, making it essential for growth. We found that c-di-AMP is involved in biofilm formation, cell wall homeostasis, osmotolerance as well as detergent and bile salt resistance in C. difficile. In a colonization mouse model, a strain lacking GdpP, a c-di-AMP degrading enzyme, failed to persist in the gut in contrast to the parental strain. We identified OpuR as a new regulator that binds c-di-AMP and represses the expression of the compatible solute transporter OpuC. Interestingly, an opuR mutant is highly resistant to a hyperosmotic or bile salt stress compared to the parental strain while an opuCA mutant is more susceptible A short exposure of C. difficile cells to bile salts resulted in a decrease of the c-di-AMP concentrations reinforcing the hypothesis that changes in membrane characteristics due to variations of the cellular turgor or membrane damages constitute a signal for the adjustment of the intracellular c-di-AMP concentration. Thus, c-di-AMP is a signaling molecule with pleiotropic effects that controls osmolyte uptake to confer osmotolerance and bile salt resistance in C. difficile and that is important for colonization of the host.One Sentence Summaryc-di-AMP is an essential regulatory molecule conferring resistance to osmotic and bile salt stresses by controlling osmolyte uptake and contributing to gut persistence in the human enteropathogen Clostridioides difficile.


2004 ◽  
Vol 186 (16) ◽  
pp. 5202-5209 ◽  
Author(s):  
James E. Bidlack ◽  
Philip M. Silverman

ABSTRACT F+ strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F+ strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F− strain or as a reduced plating efficiency of the F+ strain on solid media; at 2% bile salts, plating efficiency was reduced 104-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F+ cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F− cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra+ strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F+ cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic β-lactamase into the medium.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 674
Author(s):  
Jimmy G. Hernández-Gómez ◽  
Argelia López-Bonilla ◽  
Gabriela Trejo-Tapia ◽  
Sandra V. Ávila-Reyes ◽  
Antonio R. Jiménez-Aparicio ◽  
...  

Bile salt hydrolase (BSH) activity in probiotic strains is usually correlated with the ability to lower serum cholesterol levels in hypercholesterolemic patients. The objective of this study was the evaluation of BSH in five probiotic strains of lactic acid bacteria (LAB) and a probiotic yeast. The activity was assessed using a qualitative direct plate test and a quantitative high-performance thin- layer chromatography assay. The six strains differed in their BSH substrate preference and activity. Lactobacillus plantarum DGIA1, a potentially probiotic strain isolated from a double cream cheese from Chiapas, Mexico, showed excellent deconjugation activities in the four tested bile acids (69, 100, 81, and 92% for sodium glycocholate, glycodeoxycholate, taurocholate, and taurodeoxycholate, respectively). In the case of the commercial probiotic yeast Saccharomyces boulardii, the deconjugation activities were good against sodium glycodeoxycholate, taurocholate, and taurodeoxycholate (100, 57, and 63%, respectively). These last two results are part of the novelty of the work. A weak deconjugative activity (5%) was observed in the case of sodium glycocholate. This is the first time that the BSH activity has been detected in this yeast.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Orit Malka ◽  
Dorin Kalson ◽  
Karin Yaniv ◽  
Reut Shafir ◽  
Manikandan Rajendran ◽  
...  

Abstract Background Probiotic milk-fermented microorganism mixtures (e.g., yogurt, kefir) are perceived as contributing to human health, and possibly capable of protecting against bacterial infections. Co-existence of probiotic microorganisms are likely maintained via complex biomolecular mechanisms, secreted metabolites mediating cell-cell communication, and other yet-unknown biochemical pathways. In particular, deciphering molecular mechanisms by which probiotic microorganisms inhibit proliferation of pathogenic bacteria would be highly important for understanding both the potential benefits of probiotic foods as well as maintenance of healthy gut microbiome. Results The microbiome of a unique milk-fermented microorganism mixture was determined, revealing a predominance of the fungus Kluyveromyces marxianus. We further identified a new fungus-secreted metabolite—tryptophol acetate—which inhibits bacterial communication and virulence. We discovered that tryptophol acetate blocks quorum sensing (QS) of several Gram-negative bacteria, particularly Vibrio cholerae, a prominent gut pathogen. Notably, this is the first report of tryptophol acetate production by a yeast and role of the molecule as a signaling agent. Furthermore, mechanisms underscoring the anti-QS and anti-virulence activities of tryptophol acetate were elucidated, specifically down- or upregulation of distinct genes associated with V. cholerae QS and virulence pathways. Conclusions This study illuminates a yet-unrecognized mechanism for cross-kingdom inhibition of pathogenic bacteria cell-cell communication in a probiotic microorganism mixture. A newly identified fungus-secreted molecule—tryptophol acetate—was shown to disrupt quorum sensing pathways of the human gut pathogen V. cholerae. Cross-kingdom interference in quorum sensing may play important roles in enabling microorganism co-existence in multi-population environments, such as probiotic foods and the gut microbiome. This discovery may account for anti-virulence properties of the human microbiome and could aid elucidating health benefits of probiotic products against bacterially associated diseases.


1997 ◽  
Vol 321 (2) ◽  
pp. 389-395 ◽  
Author(s):  
Charles M. G. FRIJTERS ◽  
Roelof OTTENHOFF ◽  
Michel J. A. van WIJLAND ◽  
Carin M. J. van NIEUWKERK ◽  
Albert K. GROEN ◽  
...  

The phosphatidyl translocating activity of the mdr2 P-glycoprotein (Pgp) in the canalicular membrane of the mouse hepatocyte is a rate-controlling step in the biliary secretion of phospholipid. Since bile salts also regulate the secretion of biliary lipids, we investigated the influence of the type of bile salt in the circulation on mdr2 Pgp expression and activity. Male mice were fed a purified diet to which either 0.1% (w/w) cholate or 0.5% (w/w) ursodeoxycholate was added. This led to a near-complete replacement of the endogenous bile salt pool (mainly tauromuricholate) by taurocholate or tauroursodeoxycholate respectively. The phospholipid secretion capacity was then determined by infusion of increasing amounts of tauroursodeoxycholate. Cholate feeding resulted in a 55% increase in maximal phospholipid secretion compared with that in mice on the control diet. Northern blotting revealed that cholate feeding increased mdr2 Pgp mRNA levels by 42%. Feeding with ursodeoxycholate did not influence the maximum rate of phospholipid output or the mdr2 mRNA content. Female mice had a higher basal mdr2 Pgp mRNA level than male mice, and this was also correlated with a higher phospholipid secretion capacity. This could be explained by the 4-fold higher basal cholate content in the bile of female compared with male mice. Our results suggest that the type of bile salts in the circulation influences the expression of the mdr2 gene.


1994 ◽  
Vol 299 (3) ◽  
pp. 665-670 ◽  
Author(s):  
G Fricker ◽  
V Dubost ◽  
K Finsterwald ◽  
J L Boyer

The substrate specificity for the transporter that mediates the hepatic uptake of organic anions in freshly isolated hepatocytes of the elasmobranch little skate (Raja erinacea) was determined for bile salts and bile alcohols. The Na(+)-independent transport system exhibits a substrate specificity, which is different from the specificity of Na(+)-dependent bile salt transport in mammals. Unconjugated and conjugated di- and tri-hydroxylated bile salts inhibit uptake of cholyltaurine and cholate competitively. Inhibition is significantly greater with unconjugated as opposed to glycine- or taurine-conjugated bile salts. However, the number of hydroxyl groups in the steroid moiety of the bile salts has only minor influences on the inhibition by the unconjugated bile salts. Since the transport system seems to represent an archaic organic-anion transport system, other anions, such as dicarboxylates, amino acids and sulphate, were also tested, but had no inhibitory effect on bile salt uptake. To clarify whether bile alcohols, the physiological solutes in skate bile, share this transport system, cholyltaurine transport was studied after addition of 5 beta-cholestane-3 beta,5 alpha,6 beta-triol, 5 alpha-cholestan-3 beta-ol and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. These bile alcohols inhibit cholyltaurine uptake non-competitively. In contrast, uptake of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol, which is Na(+)-independent, is not inhibited by cholyltaurine. The findings further characterize a Na(+)-independent organic-anion transport system in skate liver cells, which is not shared by bile alcohols and has preference for unconjugated lipophilic bile salts.


2021 ◽  
Vol 32 (4) ◽  
pp. 743-749
Author(s):  
Victoria Yulita Fitriani ◽  
Budi Suprapti ◽  
Muhammad Amin

Abstract Objectives This study aims to determine the characteristics of Lactobacillus acidophilus and Lactobacillus reuteri from fermented soursop fruit juice and cow’s milk, respectively as probiotic candidate based on exposure to pH, bile salts, pathogenic bacteria, and antibiotics. Methods In vitro studies were conducted to examine the resistance of Lactobacillus acidophilus and Lactobacillus reuteri in pH 2, 2.5, 3.2, and 7.2, resistance to bile salts, resistance to pathogenic bacteria (Escherichia coli, Staphylococcus aureus and Enterococcus faecalis) and antituberculosis antibiotics. Results Viability of Lactobacillus acidophilus and Lactobacillus reuteri isolates remained unchanged (6.3 × 107 CFU/mL and 5.03 × 107 CFU/mL) at various acidic pH, and had a low survival rate in Ox gall 0.3% (bile salts). These isolates also showed antibacterial properties against pathogens in the gastrointestinal tract. Both of these bacteria are quite safe to be used together with ofloxacin, linezolid, moxifloxacin, and levofloxacin, antibiotic for tuberculosis therapy. Conclusions The results showed that Lactobacillus acidophilus and Lactobacillus reuteri from fermented soursop fruit juice and cow’s milk respectively fulfilled the characteristics of probiotic and could potentially be used as adjunct therapy in tuberculosis drug-resistance.


2019 ◽  
Vol 174 ◽  
pp. 493-500 ◽  
Author(s):  
Julieta N. Naso ◽  
Fernando A. Bellesi ◽  
Víctor M. Pizones Ruiz-Henestrosa ◽  
Ana M.R. Pilosof

Sign in / Sign up

Export Citation Format

Share Document